SummaryDrought is a normal and recurring climate feature in most parts of the world and plays a major role in limiting crop productivity. However, plants have their own defence systems to cope with adverse climatic conditions. One of these defence mechanisms is the reprogramming of gene expression by microRNAs (miRNAs). miRNAs are small noncoding RNAs of approximately 22 nucleotides length, which have emerged as important regulators of genes at post-transcriptional levels in a range of organisms. Some miRNAs are functionally conserved across plant species and are regulated by drought stress. These properties suggest that miRNA-based genetic modifications have the potential to enhance drought tolerance in cereal crops. This review summarizes the current understanding of the regulatory mechanisms of plant miRNAs, involvement of plant miRNAs in drought stress responses in barley (Hordeum vulgare L.), wheat (Triticum spp.) and other plant species, and the involvement of miRNAs in plant-adaptive mechanisms under drought stress. Potential strategies and directions for future miRNA research and the utilization of miRNAs in the improvement of cereal crops for drought tolerance are also discussed.
Drought is a major constraint to crop production, and microRNAs (miRNAs) play an important role in plant drought tolerance. Analysis of miRNAs and other classes of small RNAs (sRNAs) in barley grown under water and drought conditions reveals that drought selectively regulates expression of miRNAs and other classes of sRNAs. Low-expressed miRNAs and all repeat-associated siRNAs (rasiRNAs) tended towards down-regulation, while tRNA-derived sRNAs (tsRNAs) had the tendency to be up-regulated, under drought. Antisense sRNAs (putative siRNAs) did not have such a tendency under drought. In drought-tolerant transgenic barley overexpressing DREB transcription factor, most of the low-expressed miRNAs were also down-regulated. In contrast, tsRNAs, rasiRNAs and other classes of sRNAs were not consistently expressed between the drought-treated and transgenic plants. The differential expression of miRNAs and siRNAs was further confirmed by Northern hybridization and quantitative real-time PCR (qRT-PCR). Targets of the drought-regulated miRNAs and siRNAs were predicted, identified by degradome libraries and confirmed by qRT-PCR. Their functions are diverse, but most are involved in transcriptional regulation. Our data provide insight into the expression profiles of miRNAs and other sRNAs, and their relationship under drought, thereby helping understand how miRNAs and sRNAs respond to drought stress in cereal crops.
BackgroundMicroRNAs are important components of the regulatory network of biological systems and thousands have been discovered in both animals and plants. Systematic investigations performed in species with sequenced genomes such as Arabidopsis, rice, poplar and Brachypodium have provided insights into the evolutionary relationships of this class of small RNAs among plants. However, miRNAs from barley, one of the most important cereal crops, remain unknown.ResultsWe performed a large scale study of barley miRNAs through deep sequencing of small RNAs extracted from leaves of two barley cultivars. By using the presence of miRNA precursor sequences in related genomes as one of a number of supporting criteria, we identified up to 100 miRNAs in barley. Of these only 56 have orthologs in wheat, rice or Brachypodium that are known to be expressed, while up to 44 appear to be specifically expressed in barley.ConclusionsOur study, the first large scale investigation of small RNAs in barley, has identified up to 100 miRNAs. We demonstrate that reliable identification of miRNAs via deep sequencing in a species whose genome has not been sequenced requires a more careful analysis of sequencing errors than is commonly performed. We devised a read filtering procedure for dealing with errors. In addition, we found that the use of a large dataset of almost 35 million reads permits the use of read abundance distributions along putative precursor sequences as a practical tool for isolating miRNAs in a large background of reads originating from other non-coding and coding RNAs. This study therefore provides a generic approach for discovering novel miRNAs where no genome sequence is available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.