Huntington’s disease is characterized by a complex and heterogeneous pathogenic profile. Studies have shown that disturbance in lipid homeostasis may represent a critical determinant in the progression of several neurodegenerative disorders. The recognition of perturbed lipid metabolism is only recently becoming evident in HD. In order to provide more insight into the nature of such a perturbation and into the effect its modulation may have in HD pathology, we investigated the metabolism of Sphingosine-1-phosphate (S1P), one of the most important bioactive lipids, in both animal models and patient samples. Here, we demonstrated that S1P metabolism is significantly disrupted in HD even at early stage of the disease and importantly, we revealed that such a dysfunction represents a common denominator among multiple disease models ranging from cells to humans through mouse models. Interestingly, the in vitro anti-apoptotic and the pro-survival actions seen after modulation of S1P-metabolizing enzymes allows this axis to emerge as a new druggable target and unfolds its promising therapeutic potential for the development of more effective and targeted interventions against this incurable condition.
The efficient asymmetric hydrosilylation of imines in the presence of polymethylhydrosiloxane has been investigated by screening chiral diamine-zinc complexes. A series of chiral diamine ligands were prepared from optically pure 1,2-diphenyl-1,2-ethanediamine and screened for effectiveness. N-Benzylic substituents were required for high enantioselectivity; ligands with bulky groups or extra coordinating groups such as OH and S lowered the catalytic activity. The level of asymmetric induction was usually in >90% ee range for aromatic imine substrates. A linear correlation between the ee of the ligand and that of the product was observed, indicating the presence of a 1:1 ratio of ligand to metal coordination in the active catalytic complex.
The original version of this Article contained a typographical error in the spelling of the author M. Diana Neely, which was incorrectly given as Diana M. Neely. This has now been corrected in the PDF and HTML versions of the Article as well as the Supplementary Information that now accompanies the Article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.