The Restricted Isometry Constants (RIC) of a matrix A measures how close to an isometry is the action of A on vectors with few nonzero entries, measured in the 2 norm. Specifically, the upper and lower RIC of a matrix A of size n × N is the maximum and the minimum deviation from unity (one) of the largest and smallest, respectively, square of singular values of all N k matrices formed by taking k columns from A. Calculation of the RIC is intractable for most matrices due to its combinatorial nature; however, many random matrices typically have bounded RIC in some range of problem sizes (k, n, N ). We provide the best known bound on the RIC for Gaussian matrices, which is also the smallest known bound on the RIC for any large rectangular matrix. Improvements over prior bounds are achieved by exploiting similarity of singular values for matrices which share a substantial number of columns.
We study the convergence of gradient flows related to learning deep linear neural networks (where the activation function is the identity map) from data. In this case, the composition of the network layers amounts to simply multiplying the weight matrices of all layers together, resulting in an overparameterized problem. The gradient flow with respect to these factors can be re-interpreted as a Riemannian gradient flow on the manifold of rank-$r$ matrices endowed with a suitable Riemannian metric. We show that the flow always converges to a critical point of the underlying functional. Moreover, we establish that, for almost all initializations, the flow converges to a global minimum on the manifold of rank $k$ matrices for some $k\leq r$.
We revisit the probabilistic construction of sparse random matrices where each column has a fixed number of nonzeros whose row indices are drawn uniformly at random with replacement. These matrices have a one-to-one correspondence with the adjacency matrices of fixed left degree expander graphs. We present formulas for the expected cardinality of the set of neighbors for these graphs, and present tail bounds on the probability that this cardinality will be less than the expected value. Deducible from these bounds are similar bounds for the expansion of the graph which is of interest in many applications. These bounds are derived through a more detailed analysis of collisions in unions of sets. Key to this analysis is a novel dyadic splitting technique. The analysis led to the derivation of better order constants that allow for quantitative theorems on existence of lossless expander graphs and hence the sparse random matrices we consider and also quantitative compressed sensing sampling theorems when using sparse nonmean-zero measurement matrices.1 Lossless expanders with parameters are equivalent to lossless conductors with parameters that are base 2 logarithms of the parameters of lossless expanders see [5], [9] and the references therein. 0018-9448 © 2013 IEEE
Linear sketching and recovery of sparse vectors with randomly constructed sparse matrices has numerous applications in several areas, including compressive sensing, data stream computing, graph sketching, and combinatorial group testing. This paper considers the same problem with the added twist that the sparse coefficients of the unknown vector exhibit further correlations as determined by a known sparsity model. We prove that exploiting model-based sparsity in recovery provably reduces the sketch size without sacrificing recovery quality. In this context, we present the model-expander iterative hard thresholding algorithm for recovering model sparse signals from linear sketches obtained via sparse adjacency matrices of expander graphs with rigorous performance guarantees. The main computational cost of our algorithm depends on the difficulty of projecting onto the model-sparse set. For the tree and group-based sparsity models we describe in this paper, such projections can be obtained in linear time. Finally, we provide numerical experiments to illustrate the theoretical results in action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.