Glutathione reductase (NADPH+GSSG+H+-->NADP(+) + 2GSH) is a homodimeric flavoenzyme of known geometry. Each subunit contains four well-defined domains and contributes essential residues to the active sites; consequently, the monomer is expected to be inactive. As part of our program to develop dimerization inhibitors of human glutathione reductase (hGR) as antimalarial agents, we mutagenized the residues 446 and 447 which, together with their counterparts on the other subunit, represent the tightest contact between the subunits [Karplus, P. A., & Schulz, G. E. (1987) J. Mol. Biol. 195, 701-729]. Wild-type human glutathione reductase and mutants of this protein were produced in plasmid-transformed Escherichia coli SG5 cells. Active enzyme species, namely, wild-type hGR, N-terminally truncated delta(1-15)hGR, and the point mutant F447P-hGR, were purified by 2',5'-ADP-Sepharose chromatography and crystallization. Inactive mutants such as G446E-hGR or the double mutants G446E/F447P-hGR and G446P/F447P-hGR were isolated by immunoadsorption chromatography. G446E/F447P-hGR was studied in detail. This mutant behaved like a poorly folded monomeric protein, as indicated by the following properties: absence of the intersubunit disulfide bridge, Cys90-Cys90'; failure to bind FAD; failure to bind NADPH and analogues thereof; a short half-life (< 4 min) in E. coli cells; and high susceptibility to trypsin in vitro. The results suggest that the sequence around G446 can control dimerization as well as domain folding. This is unexpected since the FAD-binding domain and the NADPH-binding domain occur in many different enzymes and have been regarded as autonomous folding units.(ABSTRACT TRUNCATED AT 250 WORDS)
The substrate specificity of the human enzyme glutathione reductase was changed from its natural substrate glutathione to trypanothione [N1,N8-bis(glutathionyl)spermidine] by site-directed mutagenesis of two residues. The glutathione analogue, trypanothione, is the natural substrate for trypanothione reductase, an enzyme found in trypanosomatids and leishmanias, the causative agents of diseases such as African sleeping sickness, Chagas disease, and Oriental sore. The rational bases for our mutational experiments were the availability of a high-resolution X-ray structure for human glutathione reductase with bound substrates, the active site sequence comparisons of human glutathione reductase and the trypanothione reductases from Trypanosoma congolense and Trypanosoma cruzi, a complementary set of mutants in T. congolense trypanothione reductase, and the properties of substrate analogues of trypanothione. Mutation of two residues, A34----E34 and R37----W37, in the glutathione-binding site of human glutathione reductase switches human glutathione reductase into a trypanothione reductase with a preference for trypanothione over glutathione by a factor of 700 using kcat/Km as a criterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.