Summary The extent to which ectomycorrhizal (ECM) fungi enable plants to access organic nitrogen (N) bound in soil organic matter (SOM) and transfer this growth‐limiting nutrient to their plant host, has important implications for our understanding of plant–fungal interactions, and the cycling and storage of carbon (C) and N in terrestrial ecosystems. Empirical evidence currently supports a range of perspectives, suggesting that ECM vary in their ability to provide their host with N bound in SOM, and that this capacity can both positively and negatively influence soil C storage. To help resolve the multiplicity of observations, we gathered a group of researchers to explore the role of ECM fungi in soil C dynamics, and propose new directions that hold promise to resolve competing hypotheses and contrasting observations. In this Viewpoint, we summarize these deliberations and identify areas of inquiry that hold promise for increasing our understanding of these fundamental and widespread plant symbionts and their role in ecosystem‐level biogeochemistry.
Plant diversity varies immensely over large-scale gradients in temperature, precipitation, and seasonality at global and regional scales. This relationship may be driven in part by climatic variation in the relative importance of abiotic and biotic interactions to the diversity and composition of plant communities. In particular, biotic interactions may become stronger and more host specific with increasing precipitation and temperature, resulting in greater plant species richness in wetter and warmer environments. This hypothesis predicts that the many defensive compounds found in plants’ metabolomes should increase in richness and decrease in interspecific similarity with precipitation, temperature, and plant diversity. To test this prediction, we compared patterns of chemical and morphological trait diversity of 140 woody plant species among seven temperate forests in North America representing 16.2°C variation in mean annual temperature (MAT), 2,115 mm variation in mean annual precipitation (MAP), and from 10 to 68 co-occurring species. We used untargeted metabolomics methods based on data generated with liquid chromatography-tandem mass spectrometry to identify, classify, and compare 13,480 unique foliar metabolites and to quantify the metabolomic similarity of species in each community with respect to the whole metabolome and each of five broad classes of metabolites. In addition, we compiled morphological trait data from existing databases and field surveys for three commonly measured traits (specific leaf area [SLA], wood density, and seed mass) for comparison with foliar metabolomes. We found that chemical defense strategies and growth and allocation strategies reflected by these traits largely represented orthogonal axes of variation. In addition, functional dispersion of SLA increased with MAP, whereas functional richness of wood density and seed mass increased with MAT. In contrast, chemical similarity of co-occurring species decreased with both MAT and MAP, and metabolite richness increased with MAT. Variation in metabolite richness among communities was positively correlated with species richness, but variation in mean chemical similarity was not. Our results are consistent with the hypothesis that plant metabolomes play a more important role in community assembly in wetter and warmer climates, even at temperate latitudes, and suggest that metabolomic traits can provide unique insight to studies of trait-based community assembly.
We formed the Collection of Zoosporic Eufungi at the University of Michigan (CZEUM) in 2018 as a cryopreserved fungal collection consolidating the University of Maine Culture Collection (UMCC, or JEL), the University of Alabama Chytrid Culture Collection (UACCC), and additional zoosporic eufungal accessions. The CZEUM is established as a community resource containing 1045 cryopreserved cultures of Chytridiomycota, Monoblepharidomycota, and Blastocladiomycota, with 52 cultures being ex-type strains. We molecularly characterized 431 cultures by amplifying the majority of the rDNA operon in a single reaction, yielding an average fragment length of 4739 bp. We sequenced multiplexed samples with an Oxford Nanopore Technology MinION device and software, and demonstrate the method is accurate by producing sequences identical to published Sanger sequences. With these data, we generated a phylogeny of 882 zoosporic eufungi strains to produce the most comprehensive phylogeny of these taxa to date. The CZEUM is thus largely characterized by molecular data, which can guide instructors and researchers on future studies of these organisms. Cultures from the CZEUM can be purchased through an online portal.
34Wetland invasion by monotypic dominant plants can alter the physicochemical and biological 35 properties of soils that affect methane emissions, a potent greenhouse gas. We examined the 36 effects of Typha × glauca invasion on soil methane using laboratory incubation and controlled 37 mesocosm experiments. Typha-invaded soils collected from three Midwestern (USA) wetlands 38 had greater methane production potential during laboratory incubation than soils dominated by 39 native wet meadow vegetation. Ten years post-invasion of native plant-dominated mesocosms, 40Typha increased methane emissions at least three-fold (native: 15.0 ± 10.5 mg CH 4 -C m -2 h -1 , 41 median: 6.1 mg CH 4 -C m -2 h -1 ; Typha: mean: 45.9 ± 16.7 mg CH 4 -C m -2 h -1 , median: 26.8 mg 42 CH 4 -C m -2 h -1 ) under high (+10 cm) water levels, though methane emissions were negligible 43 under low (-10 cm) water levels. Methane emissions were positively correlated with soil carbon, 44 nitrogen, and aboveground biomass, all of which were greater in Typha-invaded mesocosms. 45Together, our data suggest that replacement of large tracts of native wetlands throughout eastern 46 North America with monocultures of invasive Typha could alter regional methane emissions. 47 48
Plant diversity varies immensely over large-scale gradients in temperature, precipitation, and seasonality at global and regional scales. This relationship may be driven in part by climatic variation in the relative importance of abiotic and biotic interactions to the diversity and composition of plant communities. In particular, biotic interactions may become stronger and more host specific with increasing precipitation and temperature, resulting in greater plant species richness in wetter and warmer environments. This hypothesis predicts that the many defensive compounds found in plants’ metabolomes should increase in richness and decrease in interspecific similarity with precipitation, temperature, and plant diversity. To test this prediction, we compared patterns of chemical and morphological trait diversity of 140 woody plant species among seven temperate forests in North America representing 16.2°C variation in mean annual temperature (MAT), 2,115 mm variation in mean annual precipitation (MAP), and from 10 to 68 co-occurring species. We used untargeted metabolomics methods based on data generated with liquid chromatography-tandem mass spectrometry to identify, classify, and compare 13,480 unique foliar metabolites and to quantify the metabolomic similarity of species in each community with respect to the whole metabolome and each of five broad classes of metabolites. In addition, we compiled morphological trait data from existing databases and field surveys for three commonly measured traits (specific leaf area [SLA], wood density, and seed mass) for comparison with foliar metabolomes. We found that chemical defense strategies and growth and allocation strategies reflected by these traits largely represented orthogonal axes of variation. In addition, functional dispersion of SLA increased with MAP, whereas functional richness of wood density and seed mass increased with MAT. In contrast, chemical similarity of co-occurring species decreased with both MAT and MAP, and metabolite richness increased with MAT. Variation in metabolite richness among communities was positively correlated with species richness, but variation in mean chemical similarity was not. Our results are consistent with the hypothesis that plant metabolomes play a more important role in community assembly in wetter and warmer climates, even at temperate latitudes, and suggest that metabolomic traits can provide unique insight to studies of trait-based community assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.