How popular a topic or an opinion appears to be in a network can be very different from its actual popularity. For example, in an online network of a social media platform, the number of people who mention a topic in their posts-i.e., its global popularity-can be dramatically different from how people see it in their social feeds-i.e., its perceived popularity-where the feeds aggregate their friends' posts. We trace the origin of this discrepancy to the friendship paradox in directed networks, which states that people are less popular than their friends (or followers) are, on average. We identify conditions on network structure that give rise to this perception bias, and validate the findings empirically using data from Twitter. Within messages posted by Twitter users in our sample, we identify topics that appear more frequently within the users' social feeds, than they do globally, i.e., among all posts. In addition, we present a polling algorithm that leverages the friendship paradox to obtain a statistically efficient estimate of a topic's global prevalence from biased perceptions of individuals. We characterize the bias of the polling estimate, provide an upper bound for its variance, and validate the algorithm's efficiency through synthetic polling experiments on our Twitter data. Our paper elucidates the non-intuitive ways in which the structure of directed networks can distort social perceptions and resulting behaviors. * N. Alipourfard and B. Nettasinghe contributed equally to this work.
This paper deals with randomized polling of a social network. In the case of forecasting the outcome of an election between two candidates A and B, classical intent polling asks randomly sampled individuals: who will you vote for? Expectation polling asks: who do you think will win? In this paper, we propose a novel neighborhood expectation polling (NEP) strategy that asks randomly sampled individuals: what is your estimate of the fraction of votes for A? Therefore, in NEP, sampled individuals will naturally look at their neighbors (defined by the underlying social network graph) when answering this question. Hence, the mean squared error (MSE) of NEP methods rely on selecting the optimal set of samples from the network. To this end, we propose three NEP algorithms for the following cases: (i) the social network graph is not known but, random walks (sequential exploration) can be performed on the graph (ii) the social network graph is unknown. For both cases, algorithms based on a graph theoretic consequence called friendship paradox are proposed. Theoretical results on the dependence of the MSE of the algorithms on the properties of the network are established. Numerical results on real and synthetic data sets are provided to illustrate the performance of the algorithms.
This paper considers the problem of randomized influence maximization over a Markovian graph process: given a fixed set of nodes whose connectivity graph is evolving as a Markov chain, estimate the probability distribution (over this fixed set of nodes) that samples a node which will initiate the largest information cascade (in expectation). Further, it is assumed that the sampling process affects the evolution of the graph i.e. the sampling distribution and the transition probability matrix are functionally dependent. In this setup, recursive stochastic optimization algorithms are presented to estimate the optimal sampling distribution for two cases: 1) transition probabilities of the graph are unknown but, the graph can be observed perfectly 2) transition probabilities of the graph are known but, the graph is observed in noise. These algorithms consist of a neighborhood size estimation algorithm combined with a variance reduction method, a Bayesian filter and a stochastic gradient algorithm. Convergence of the algorithms are established theoretically and, numerical results are provided to illustrate how the algorithms work.
We consider SIS contagion processes over networks where, a classical assumption is that individuals' decisions to adopt a contagion are based on their immediate neighbors. However, recent literature shows that some attributes are more correlated between two-hop neighbors, a concept referred to as monophily. This motivates us to explore monophilic contagion, the case where a contagion (e.g. a product, disease) is adopted by considering two-hop neighbors instead of immediate neighbors (e.g. you ask your friend about the new iPhone and she recommends you the opinion of one of her friends). We show that the phenomenon called friendship paradox makes it easier for the monophilic contagion to spread widely. We also consider the case where the underlying network stochastically evolves in response to the state of the contagion (e.g. depending on the severity of a flu virus, people restrict their interactions with others to avoid getting infected) and show that the dynamics of such a process can be approximated by a differential equation whose trajectory satisfies an algebraic constraint restricting it to a manifold. Our results shed light on how graph theoretic consequences affect contagions and, provide simple deterministic models to approximate the collective dynamics of contagions over stochastic graph processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.