We report an industrially scalable, fast, and simple process for the large scale fabrication of optically transparent and electrically conducting thin films of single-walled carbon nanotubes (SWNT). Purified, pristine HiPco SWNTs were dispersed in water at high concentrations with the help of surfactants, rod-coated into uniform thin films, and doped by various acids. We show how to combine different surfactants to make uniform dispersions with high concentration of SWNTs and optimal rheological behavior for coating and drying, including preventing dewetting and film rupture that has plagued earlier attempts. Doping by fuming sulfuric acid yielded the films with best performance (sheet resistance of 100 and 300 ⍀/sq for respective transparency of 70% and 90%). We use a figure of merit (FOM) plot for an immediate evaluation and comparison of the performance and microstructure of CNT films produced by different methods. Further scientific engineering will pave the way to the deployment of CNT films in commercial applications.
We report the observation of liquid crystals formed by giant graphene oxide flakes (aspect ratio above 10 000) suspended in water. As their concentration increases, the flakes undergo transitions from an isotropic dispersion to a biphasic system and then to a discotic nematic liquid crystal. The gel-like liquid crystal displays an unusual defect-free uniform director alignment over hundreds of micrometres. We characterize the nematic order parameter, optical birefringence and elastic properties of this novel mesomorphic system.
We present a modification of the vacuum filtration technique for fabricating transparent conductive SWNT thin films with local nematic-like orientational ordering. Dilute SWNT surfactant dispersions are filtered through a vacuum filtration setup in a slow and controlled fashion. The slow filtration creates a region of high SWNT concentration close to the filter membrane. While slowly moving through this region, SWNTs interact and align with each other, resulting in the formation of thin films with local nematic ordering. Scanning electron microscopy and image analysis revealed a local scalar order parameter (S 2D) of 0.7–0.8 for slow filtration, three times higher than those produced from “fast filtration” (S 2D ≈ 0.24). Orientational ordering is demonstrated with different stabilizing surfactants, as well as with dispersions enriched in metallic SWNTs, produced by density-gradient ultracentrifugation. Simple estimates of relative convective versus diffusive transport highlight the main differences between slow versus fast filtration and the resulting SWNT concentration profiles. Comparisons with previous studies on three stages of liquid-crystal phase transition provide insight into the spontaneous ordering process, indicating the lack of a “healing stage”, which results in a microstructure consisting of staggered domains in our SWNT films.
We report a simple and versatile technique for oriented assembly of gold nanorods on aligned single-walled carbon nanotube (SWNT) macrostructures, such as thin nanotube films and nanotube fibers. The deposition and assembly is accomplished via drop drying of dilute gold nanorod suspensions on SWNT macrostructures under ambient conditions. Guided by anisotropic interactions, gold nanorods, and polygonal platelets spontaneously align with SWNTs, resulting in macroscopic arrays of locally ordered nanorods supported on aligned SWNT substrates. SEM reveals that the scalar order parameter of rods relative to the local average SWNT alignment is 0.7 for rods on SWNT films and 0.9 for rods on SWNT fibers. This self-alignment is enabled by anisotropic gold nanoparticle-SWNT interactions and is observed for a wide range of nanoparticles, including nanorods with aspect ratios ranging from 2-35, thin gold triangular and other polygonal platelets. The plasmonic properties of aligned gold nanorods together with superior electronic, chemical and mechanical properties of SWNTs make these hybrid nanocomposites valuable for the design of self-assembled multifunctional optoelectronic materials and optical metamaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.