The price of electrocardiograph (ECG) machine on the market is very high. Currently, the technology used is still very complicated and ineffective, and the ECG machine cannot be connected to other devices. A new development of a low-cost ECG machine with a customized design was needed to integrate the machine with other devices. Therefore, the purpose of this study is to develop a low-cost ECG machine which can be connected to other devices and equipped with sensitivity and paper speed setting. So that portable ECG machines can be produced and used at small clinics in the society. In this study, the main controller of the 12 channels ECG machines was supported by ATMEGA16 microcontroller, that is available on the market at low prices. The main part of the ECG amplifier is built using a high common mode rejection ratio (CMRR) instrumentation amplifier (AD620) and a bandpass filter which the cutoff frequency for highpass filter and lowpass filter are 0.05 Hz and 100 Hz, respectively. In order to complement the previous study, some features were introduced such as selectivity and motor speed option. In this study, 10 participants are involved for data acquisition,and an ECG phantom was used to calibrate the machine. The performance of the ECG machine was evaluated using standard measurement namely relative percentage error (% error) and uncertainty (UA). The result shows that %error from all of the feature is less than 2% and the UA is 0.0 which shows that the ECG machine is feasible for diagnostic purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.