Analisis sentimen merupakan suatu teknik idetifikasi terhadap emosi yangdiekspresikan melalui teks. Tujuan analisis sentimen adalah menentukan apakah suatupendapat dalam kalimat atau dokumen termasuk kategori positif ataunegatif. Twitter merupakan salah satu media sosial yang sering digunakan dalammenyampaikan pendapat. Twitter memungkinkan penggunanya (user) untuk menulispendapat mereka mengenai berbagai topik dalam sebuah tweet. Data twitter dalampenelitian ini didownload melalui twitter Application Programming Interface (API).Data twitter tersebut terdiri dari 500 tweet tentang pariwisata Lombok dengan hashtag#lombok dan #woderfullombok. Fitur informasi dari setiap tweet diseleksimenggunakan metode Mutual Information dan dianalisis menggunakan modelklasifikasi Naïve Bayes (Naïve Bayes Classifier). Hasil pengujian klasifikasisentimen twitter pada kategori positif dan negatif menggunakan 10-fold crossvalidation memperoleh akurasi rata-rata sebesar 97,9%.Kata kunci : Analisis Sentimen, Twitter, Naïve Bayes Classifier, Mutual Information
This paper presents the application of the Backpropagation method of the Artificial Neural Network algorithm in the case study to forecasting the amount of export value in NTB province. This forecasting process uses two scenarios, namely forecasting the amount of export value in NTB province and forecasting the amount of export value based on a commodity which then the forecasting results based on these two scenarios will be compared. Based on the results of the system testing that has been done, the best network architecture is obtained from 12-4-1, the best value of learning rate is 0.2 and the best number of epochs is 6000, which in the training device produces these variables resulting in an MSE value is 0,0034 and MAPE value is 8.52% and for the testing result MSE value is 0.0169 and MAPE value is 17.94%. Based on the results of forecasting with two scenarios that have been carried out are forecasting results that are negative. This is because the pattern of data used is not stable so that it can produce negative values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.