Many viruses alter intracellular calcium homeostasis. The rotavirus nonstructural protein 4 (NSP4), an endoplasmic reticulum (ER) transmembrane glycoprotein, increases intracellular levels of cytoplasmic Ca2+ ([Ca2+]cyto) through a phospholipase C-independent pathway, which is required for virus replication and morphogenesis. However, the NSP4 domain and mechanism that increases [Ca2+]cyto are unknown. We identified an NSP4 domain (amino acids [aa] 47 to 90) that inserts into membranes and has structural characteristics of viroporins, a class of small hydrophobic viral proteins that disrupt membrane integrity and ion homeostasis to facilitate virus entry, assembly, or release. Mutational analysis showed that NSP4 viroporin activity was mediated by an amphipathic α-helical domain downstream of a conserved lysine cluster. The lysine cluster directed integral membrane insertion of the viroporin domain and was critical for viroporin activity. In epithelial cells, expression of wild-type NSP4 increased the levels of free cytoplasmic Ca2+ by 3.7-fold, but NSP4 viroporin mutants maintained low levels of [Ca2+]cyto, were retained in the ER, and failed to form cytoplasmic vesicular structures, called puncta, which surround viral replication and assembly sites in rotavirus-infected cells. When [Ca2+]cyto was increased pharmacologically with thapsigargin, viroporin mutants formed puncta, showing that elevation of calcium levels and puncta formation are distinct functions of NSP4 and indicating that NSP4 directly or indirectly responds to elevated cytoplasmic calcium levels. NSP4 viroporin activity establishes the mechanism for NSP4-mediated elevation of [Ca2+]cyto, a critical event that regulates rotavirus replication and virion assembly.
Autophagy is a cellular degradation process involving an intracellular membrane trafficking pathway that recycles cellular components or eliminates intracellular microbes in lysosomes. Many pathogens subvert autophagy to enhance their replication, but the mechanisms these pathogens use to initiate the autophagy process have not been elucidated. This study identifies rotavirus as a pathogen that encodes a viroporin, nonstructural protein 4, which releases endoplasmic reticulum calcium into the cytoplasm, thereby activating a calcium/calmodulin-dependent kinase kinase-β and 5′ adenosine monophosphate-activated protein kinase-dependent signaling pathway to initiate autophagy. Rotavirus hijacks this membrane trafficking pathway to transport viral proteins from the endoplasmic reticulum to sites of viral replication to produce infectious virus. This process requires PI3K activity and autophagy-initiation proteins Atg3 and Atg5, and it is abrogated by chelating cytoplasmic calcium or inhibiting calcium/calmodulin-dependent kinase kinase-β. Although the early stages of autophagy are initiated, rotavirus infection also blocks autophagy maturation. These studies identify a unique mechanism of virus-mediated, calcium-activated signaling that initiates autophagy and hijacks this membrane trafficking pathway to transport viral proteins to sites of viral assembly.V iruses are obligate intracellular parasites that, due to their limited coding capacity, have evolved strategies that usurp cellular processes to facilitate their own propagation. Macroautophagy (hereafter referred to as autophagy) is a cellular catabolic process used to maintain homeostasis by delivering cytoplasmic material to lysosomes for degradation via an intracellular membrane trafficking pathway (1). Autophagy also has intracellular antimicrobial properties and plays a role in the initiation of innate and adaptive immune responses to viral and bacterial infections. Numerous pathogens, including a number of DNA and RNA viruses, have been shown to evade or subvert autophagy (2); however, for most of these viruses, the mechanisms used to initiate autophagy and subvert the normal autophagy process have not been elucidated.The formation of autophagy membranes is complex and not completely understood, but the autophagy (Atg) proteins comprise the core molecular machinery involved in this dynamic membrane rearrangement (3). Autophagy, which is repressed by the mammalian target of rapamycin (mTOR), can be activated by nutrient deprivation; growth factor depletion; or cellular stress, such as hypoxia, energy depletion, endoplasmic reticulum (ER) stress, high temperature, or high cell density conditions (4). Following nutrient deprivation, mTOR is inhibited and a complex composed of Atg13/ULK1/FIP200/Atg101 forms to initiate nucleation of an isolation membrane, or phagophore (5). The phagophore elongates and subsequently encloses cytoplasmic components, forming a double-membrane vacuole, the autophagosome. The elongation phase requires two ubiquitin-like conjugation ...
Background-Thoracic aortic dissection (TAD) is characterized by dysregulated extracellular matrix. Little is known about the alterations of collagen and stimulators of collagen synthesis, eg, connective tissue growth factor (CTGF), in patients with TAD. In this study, we examined their roles in TAD. Methods and Results-Surgical specimens of the aortic wall of TAD patients (nϭ10) and controls (nϭ10) were tested for collagen types I and III and CTGF expression. When compared with controls, protein levels of type I and III collagen and CTGF were significantly increased by 3.2-, 3.7-, and 5.3-fold, respectively (PϽ0.05 for all). Similar patterns were shown in mRNA levels of type I␣ and I␣2 collagen and CTGF. Using immunohistochemistry and trichrome staining, we also observed elevated levels of collagen in the aortic media and adventitia. Treatment with recombinant human CTGF increased collagen synthesis in cultured aortic smooth muscle cells in a dose-and time-dependent fashion, in which expression of collagens increased from 506Ϯ108 counts per minute to 2764Ϯ240 cpm by 50 ng/mL CTGF, and from 30Ϯ43 cpm to 429Ϯ102 cpm at 48 hours. Conclusions-TAD patients exhibited significantly increased expression of aortic collagen types I and III as well as CTGF, which is likely to be responsible for the compromised aortic distensibility and systemic compliance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.