The present review is aimed at elucidating the neonatal 'sepsis redox cycle' - the cascade of inflammatory and redox events involved in the pathogenesis of sepsis in neonates. While adult and neonatal sepses share some common features, there are some substantial differences: higher mortality rates occur in adult sepsis and worse long-term effects are evident in neonatal sepsis survivors. Such epidemiological data may be explained by the lower ability of IL6 and IL8 to activate NF-κB-regulated transcription in neonatal sepsis in comparison to TNF-α, which is involved in the mechanisms of adult sepsis. The activation of NF-κB in neonatal sepsis is further promoted by hydrogen peroxide and results in mitochondrial dysfunction and energy failure as septic neonates experience decreased O2 consumption as well as lower heat production and body temperature in comparison to healthy peers. In neonates, specific organs that are still under development are vulnerable to sepsis-provoked stress, which may lead to brain, lung, and heart injury, as well as vision and hearing impairments. In the light of the processes integrated here, it is clear that therapeutic approaches should also target specific steps in the neonatal 'sepsis redox cycle' in addition to the current therapeutic approach that is mainly focused on pathogen eradication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.