Palm fiber (PF) reinforced acrylonitrile butadiene styrene (ABS) composite matrix was prepared by employing Injection Moulding Machine (IMM). Palm fiber was collected from ten different trees of different age group from Comilla region in Bangladesh. Three sets of samples were prepared for three different wt% (5%, 10% and 20%) of fiber contents. The mechanical (tensile strength, flexural stress, micro hardness, Leeb's rebound hardness) and physical (bulk density and water absorption) properties were measured. The observed result reveals that the tensile strength (TS) and flexural stress (FS) were decreased with increasing fiber contents in the PF-ABS composites except 10% fiber content.
With the aid of Injection Moulding Machine (IMM) Palm fiber reinforced Acrylonitrile Butadiene Styrene (ABS) composites (PF-ABS) were prepared. Three sets of samples were prepared for three different wt% (5%, 10% and 20%) of fiber contents. Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) experiments were performed to study the surface morphology, microstructure (if it crystalline or noncrystalline) and new bond formation after preparation of the composites. SEM pattern shows that after addition of palm fiber in PF-ABS composites the brittleness increased due to creation of voids in the composites except 10% fiber content in PF-ABS. From XRD pattern it is clear that the palm fiber, ABS and PF-ABS composites are amorphous in nature. Moreover FTIR spectrum shows that there is no new bond formed after addition of palm fiber in ABS polymeric matrix to create PF-ABS composites.
Natural fiber reinforced composite materials are replacing the conventional materials, owing to their excellent physical, mechanical, electrical, and thermal properties. Also they increase biodegradability, reduce cost and decrease environmental pollution and hazards. In this study, obsolete high density polyethylene (HDPE) has used as polymer matrix and banana fiber as reinforcement material. Composites (5%, 10%, 15% and 20% of fiber contents) were made by hot press molding method by using Paul-Otto Weber Hydraulic press machine. The physical, mechanical and thermal properties of banana fiber-HDPE composites were studied and investigated the increment or decrement nature of different properties due to addition of banana fiber in BF-HDPE composites. The bulk density of composites increased with the increase wt. (%) of fiber content in composites. Water absorption ability of banana fiber and BF-HDPE composites also increased with the increase of wt. (%) of fiber content in composites and with socking time. Tensile strength of the BF-HDPE composites increased with the increase of fiber content in both cases (continuous aligned fiber orientation and continuous bidirectional fiber orientation). Moreover, the tensile strength of BF-HDPE composites with continuous aligned fiber orientation was greater than that of continuous bidirectional fiber orientation. At first, the flexural strength increased for 5% BF-HDPE composites then the value decreased for other higher compositions. The flexural strength of continuous aligned fiber orientation was slightly greater than that of continuous bidirectional fiber orientation and composite with 5% banana fiber showed better flexural properties than others. Leeb's rebound hardness decreased with the increase of fiber addition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.