It is of great significance to detect drones in airspace due to the substantial increase and regrettable misuse in the consumer market. In this paper, we establish a micro-motion theoretical model of a drone and analyze the micro-Doppler signature of rotor targets and the flicker mechanisms of the multi-rotor targets. Hence, for the target recognition problem of multi-rotor drones, a multi-rotor target micro-Doppler parameter estimation method is proposed. Firstly, a signal frequency domain segmentation method is proposed based on the complex variational mode decomposition (CVMD) to separate the high-frequency part of the high-frequency flicker in the frequency domain. Secondly, for the signal after frequency domain segmentation, a flicker time domain position method based on singular value decomposition (SVD) is proposed. Finally, by integrating CVMD frequency domain segmentation and SVD time domain positioning, the reconstruction of multi-rotor target scintillation at different speeds is realized, and the micro-motion parameters of rotor blades are successfully estimated. The simulation results show that the method has high accuracy in estimating the micro-motion parameters of a multi-rotor, which makes up for the shortage of the traditional method in estimating the micro-motion parameters of the multi-rotor target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.