Localization and mapping technologies are of great importance for all varieties of Unmanned Aerial Vehicles (UAVs) to perform their operations. In the near future, it is planned to increase the use of micro/nano-size UAVs. Such vehicles are sometimes expendable platforms, and reuse may not be possible. Compact, mounted and low-cost cameras are preferred in these UAVs due to weight, cost and size limitations. Visual simultaneous localization and mapping (vSLAM) methods are used for providing situational awareness of micro/nano-size UAVs. Fast rotational movements that occur during flight with gimbal-free, mounted cameras cause motion blur. Above a certain level of motion blur, tracking losses exist, which causes vSLAM algorithms not to operate effectively. In this study, a novel vSLAM framework is proposed that prevents the occurrence of tracking losses in micro/nano-UAVs due to the motion blur. In the proposed framework, the blur level of the frames obtained from the platform camera is determined and the frames whose focus measure score is below the threshold are restored by specific motion-deblurring methods. The major reasons of tracking losses have been analyzed with experimental studies, and vSLAM algorithms have been made durable by our studied framework. It has been observed that our framework can prevent tracking losses at 5, 10 and 20 fps processing speeds. vSLAM algorithms continue to normal operations at those processing speeds that have not been succeeded before using standard vSLAM algorithms, which can be considered as a superiority of our study.
This study presents parallelization of Hamming Distance algorithm, which is used for iris comparison on iris recognition systems, for heterogeneous systems that can be included Central Processing Units (CPUs), Graphics Processing Units (GPUs), Digital Signal Processing (DSP) boards, Field Programmable Gate Array (FPGA) and some other mobile platforms with OpenCL. OpenCL allows to run same code on CPUs, GPUs, FPGAs and DSP boards. Heterogeneous computing refers to systems include different kind of devices (CPUs, GPUs, FPGAs and other accelerators). Heterogeneous computing gains performance or reduces power for suitable algorithms on these OpenCL supported devices. In this study, Hamming Distance algorithm has been coded with C++ as a sequential code and has been parallelized a designated method by us with OpenCL. Our OpenCL code has been executed on Nvidia GT430 GPU and Intel Xeon 5650 processor. The OpenCL code implementation demonstrates that speed up to 87 times with parallelization. Also our study differs from other studies, which accelerate iris matching, with regard to ensure heterogeneous computing by using OpenCL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.