Injury to the renal proximal tubule is common and may be followed by either recovery or cell death. The survival of injured cells is supported by a transient change in cellular metabolism that maintains life even when oxygen tension is reduced. This adaptive process involves the activation of the gene encoding the glucose transporter GLUT1, which is essential to maintain the high rates of glucose influx demanded by glycolysis. We hypothesized that after cell injury increases of cell Ca 2 ϩ (Ca 2 ϩ i ) initiate the flow of information that culminates with the upregulation of the stress response gene GLUT1. We found that elevations of Ca
The functions of absorption of dietary glucose by the small intestine and reabsorption of filtered glucose by the renal proximal tubule are strikingly similar in their organization and in the way they adapt to uncontrolled diabetes mellitus. In both cases, transepithelial glucose and Na+ fluxes are augmented. The epithelial adaptations to hyperglycemia of uncontrolled diabetes are accomplished by increasing the glucose transport surface area and the number of the efflux glucose transporter GLUT2 located in the basolateral membrane. The signals that modify the size of the epithelium and the overexpression of basolateral GLUT2 are not known. It was speculated that high glucose levels and enhanced Na+ flux may be important factors in the signaling event that culminates in a renal and intestinal epithelium that is modified to transport higher rates of glucose against a higher extracellular level of glucose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.