The high-entropy carbides (HECs) are reviewed in terms of the crystal structure, powder synthesis, densification, and mechanisms in this article. The inter-diffusion rate of binary carbide is mainly analyzed and predicted based on lattice parameters. During the solid solution formation progress, the densification methods usually adopted were hot pressing and spark plasma sintering. It was found that the distribution of metal atoms was more uniform in high-entropy powders derived from binary carbide raw materials. HECs displayed higher hardness, elastic modulus, and oxidation resistance, and meanwhile exhibited lower thermal conductivity compared to binary carbides. HECs are expected to be used as high-speed atmospheric re-entry vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.