Information extraction is a well-known topic that plays a critical role in many NLP applications as its outputs can be considered as an entrance step for digital transformation. However, there still exist gaps when applying research results to actual business cases. This paper introduces AURORA, an information extraction for domainspecific business documents. The intuition of AURORA is to use transfer learning for extraction. To do that, it utilizes the power of transformers for dealing with the limitation of training data in business cases and stacks additional layers for domain adaptation. We demonstrate AURORA in the context of actual scenarios where users are invited to experience two functions: fine-grained and whole paragraph extraction of Japanese business documents. A video of the system is available at http://y2u.be/xHQpYE41Tqw.
Sentence compression is the task of creating a shorter version of an input sentence while keeping important information. In this paper, we extend the task of compression by deletion with the use of contextual embeddings. Different from prior work usually using non-contextual embeddings (Glove or Word2Vec), we exploit contextual embeddings that enable our model capturing the context of inputs. More precisely, we utilize contextual embeddings stacked by bidirectional Long-short Term Memory and Conditional Random Fields for dealing with sequence labeling. Experimental results on a benchmark Google dataset show that by utilizing contextual embeddings, our model achieves a new state-of-theart F-score compared to strong methods reported on the leader board.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.