Pomelo leaves oil has many applications regarding hair nourishment and stimulation. Recently, new methods of extracting essential oil used have been increasingly developed to replace traditional methods. In this research, maximization of essential oils yield from Citrus grandis was studied by the combination of microwave assisted hydro-distillation (MAHD) and response surface methodology (RSM). We found that the maximum essential oil yield was 0.3197 % with 91.3 % desirability corresponding to factors such as material and water ratiosof 3.04:1, extraction time at 62.76 min and microwave power of 482.17 W. ANOVA analysis for quadratic model also gives favourable outcome including the high determination coefficient (R2 = 0.9443), significant F-value and p-value of coefficients. All these values indicate that this model is significant between experimental and predicted variables.
This article reports on application of surface-initiated thiol-lactam initiated radical polymerization (TLIRP) method to modify hydroxyapatite nanocrystals (HAP) with thermoresponsive poly(N-isopropylacrylamide) (PNIPAm) brushes through grafting from strategy. Initially, 3-mercaptopropyl trimethoxysilane possessing thiol groups was functionalized with the -OH species on the surface of hydroxyapatite through ligand-exchanging response to introduce thiol species on hydroxyapatite (hydroxyapatite-thiol). Subsequently, attaching polymerization of N-isopropylacrylamide from HAP-SH surface was accomplished in the attendance of butyrolactam to produce PNIPAAmg-HAP. Thermogravimetric analysis, Fourier transform infrared, X-ray photoelectron spectroscopy and their thermal phase transition behaviour were employed to confirm the grafting and to characterize the nanoparticle structure.
Anthocyanins are naturally occurring compounds that are responsible for a wide variety of colors in many plants, fruits and vegetables. In this study, the extraction of natural anthocyanins from Vietnamese Carissa carandas L. beverage was optimized using response surface methodology (RSM). We applied a Box–Behnken design consisting of three levels and three factors. Examined factors are extraction temperature (ranging from 40 to 60°C), liquid to solid ratio (ranging from 2:1 to 4:1), extraction time (ranging from 30 to 60 min). Using 60% ethanol as solvent for the process, we determined the maximum yields of anthocyanin was 273.786 mg/L. This yield corresponds to extraction conditions of 3:1 (v/w) liquid to solid ratio, temperature of 48.10 °C with a 44.08 min extraction time. The experimental results also fit well with the proposed response model of anthocyanin yield (R2 = 0.9992). Therefore, this study suggested optimization of different extraction methods for the defatted fruit parts.
In this manuscript, biological durability, cytotoxicity and MRI image contrast effect of chitosan modified magnetic nanoparticles were investigated. The result of durability study shows that the asprepared sample with average size of about 30 nm had a high stability under pH conditions
in range of from 2 to 12 and at salt concentration in range of from 0 to 300 mM. The cytotoxicity testing indicates that the obtained Fe3O4@CS ferrofluid revealed a low cytotoxicity. After 48 h of test on the line of prostate tumor cells of Sarcoma 180, collected IC50
value was 178.5±22 (μg/ml), 7.5 to 27.9 times less cytotoxicity than that of reported ferromagnetic fluids. MRI data shows that the transverse relaxation rate (r2) of the ferrite nanoparticles was 130.32 (mM−1s−1), 2 and 1.44 times
larger than that of the commercial products of Sinerem (AMI-227) and Ferumoxytol products, respectively. Invivo test in rabbit shows that the picture of body parts was clearly observed after the injection of the Fe3O4@CS ferrofluid. With these outstanding properties,
this magnetic fluid based on the chitosan modified Fe3O4 nanoparticles had great potential for enhancing the image contrast in image diagnosis by MRI magnetic resonance imaging technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.