SUMMARYOptimizing embedded software is a problem having scientific and practical signification. Optimizing embedded software can be done in different phases of the software life cycle under different optimal conditions. Most studies of embedded software optimization are done in forward engineering and these studies have not given an overall model for the optimization problem of embedded software in both forward engineering and reverse engineering. Therefore, in this paper, we propose a new approach to embedded software optimization based on reverse engineering. First, we construct an overall model for the embedded software optimization in both forward engineering and reverse engineering and present a process of embedded software optimization in reverse engineering. The main idea of this approach is that decompiling executable code to source code, converting the source code to models and optimizing embedded software under different levels such as source code and model. Then, the optimal source code is recompiled. To develop this approach, we present two optimization techniques such as optimizing power consumption of assembly programs based on instruction schedule and optimizing performance based on alternating equivalent expressions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.