<p style='text-indent:20px;'>In this paper, we investigate a source identification problem for a class of abstract nonlocal differential equations in separable Hilbert spaces. The existence of mild solutions and strong solutions for the problem of identifying parameter are obtained. Furthermore, we study the continuous dependence on the data and the regularity of the mild solutions and strong solutions of nonlocal differential equations. Examples given in anomalous diffusion equations illustrate the existence and regularity results.</p>
In this article, we study the existence of the integral solution to the neutral functional differential inclusion $${\frac{d}{dt}\mathcal{D}y_t-A\mathcal{D}y_t-Ly_t \in F(t,y_t), \quad\text{for a.e. }t \in J:=[0,\infty),\\ y_0=\phi \in C_E=C([-r,0];E),\quad r>0,}$$ and the controllability of the corresponding neutral inclusion $${\frac{d}{dt}\mathcal{D}y_t-A\mathcal{D}y_t-Ly_t \in F(t,y_t)+Bu(t),\quad \text{for a.e. } t \in J,\\ y_0=\phi \in C_E,}$$ on a half-line via the nonlinear alternative of Leray-Schauder type for contractive multivalued mappings given by Frigon. We illustrate our results with applications to a neutral partial differential inclusion with diffusion, and to a neutral functional partial differential equation with obstacle constrains.
<p style='text-indent:20px;'>In this paper, we are interested in the existence of solutions to the anomalous diffusion equations with delay subjected to nonlocal initial condition:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation} \label{01} \begin{cases} \partial _t(k*(u-u_0)) +(- \Delta)^\sigma u = f(t,u,u_\rho) \; {\rm {in }}\ \mathbb R^+\times \Omega,\\ u\bigr |_{\partial \Omega} = 0\; {\rm {in }}\ \mathbb R^+\times \partial \Omega,\\ u(s)+g(u)(s) = \phi(s) \;{\rm {in }}\ \Omega, s\in [-h,0]. \end{cases} \notag \tag{1} \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded domain of <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>, the constant <inline-formula><tex-math id="M3">\begin{document}$ \sigma $\end{document}</tex-math></inline-formula> is in <inline-formula><tex-math id="M4">\begin{document}$ (0,1] $\end{document}</tex-math></inline-formula>. Under appropriate assumptions on <inline-formula><tex-math id="M5">\begin{document}$ k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ f,g $\end{document}</tex-math></inline-formula>, we obtain the existence of global solutions and decay mild solutions for (1). The tools used include theory of completely positive functions, resolvent operators, the technique of measures of noncompactness and some fixed point arguments in suitable function spaces. Two application examples with respect to the specific cases of the term <inline-formula><tex-math id="M7">\begin{document}$ k $\end{document}</tex-math></inline-formula> in (1) are presented.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.