Abstract-A class of nonlinear quaternion-valued adaptive filtering algorithms is proposed based on locally analytic nonlinear activation functions. To circumvent the stringent standard analyticity conditions which are prohibitive to the development of nonlinear adaptive quaternion-valued estimation models, we use the fact that stochastic gradient learning algorithms require only local analyticity at the operating point in the estimation space. It is shown that the quaternion-valued exponential function is locally analytic, and, since local analyticity extends to polynomials, products, and ratios, we show that a class of transcendental nonlinear functions can serve as activation functions in nonlinear and neural adaptive models. This provides a unifying framework for the derivation of gradient-based learning algorithms in the quaternion domain, and the derived algorithms are shown to have the same generic form as their real-and complex-valued counterparts. To make such models second-order optimal for the generality of quaternion signals (both circular and noncircular), we use recent developments in augmented quaternion statistics to introduce widely linear versions of the proposed nonlinear adaptive quaternion valued filters. This allows full exploitation of second-order information in the data, contained both in the covariance and pseudocovariances to cater rigorously for second-order noncircularity (improperness), and the corresponding power mismatch in the signal components. Simulations over a range of circular and noncircular synthetic processes and a real world 3-D noncircular wind signal support the approach.Index Terms-Augmented quaternion statistics, H-circularity, nonlinear adaptive filtering, quaternion least mean square, widely linear modeling, widely linear quaternion least mean square, wind prediction.
The strict Cauchy-Riemann-Fueter (CRF) analyticity conditions establish that only linear quaternion-valued functions are analytic, prohibiting the development of quaternion-valued nonlinear adaptive filters for the recurrent neural network architecture (RNN). In this work, the requirement of local analyticity in gradient based learning is exercised and proposes to use the local analyticity condition (LAC) to introduce quaternion-valued nonlinear feedback adaptive filters. The introduced class of algorithms make full use of quaternion algebra and provide generic extensions of the corresponding real and complex solutions. Simulations in the prediction setting support the analysis presented. © 2012 IEEE
Data-adaptive optimal modeling and identification of real-world vector sensor data is provided by combining the fractional tap-length (FT) approach with model order selection in the quaternion domain. To account rigorously for the generality of such processes, both second-order circular (proper) and noncircular (improper), the proposed approach in this paper combines the FT length optimization with both the strictly linear quaternion least mean square (QLMS) and widely linear QLMS (WL-QLMS). A collaborative approach based on QLMS and WL-QLMS is shown to both identify the type of processes (proper or improper) and to track their optimal parameters in real time. Analysis shows that monitoring the evolution of the convex mixing parameter within the collaborative approach allows us to track the improperness in real time. Further insight into the properties of those algorithms is provided by establishing a relationship between the steady-state error and optimal model order. The approach is supported by simulations on model order selection and identification of both strictly linear and widely linear quaternion-valued systems, such as those routinely used in renewable energy (wind) and human-centered computing (biomechanics).
This paper proposes a novel hybrid filter for data-adaptive optimal identification and modeling of complex-valued real-world signals based on the convex combination approach. It is equipped with different complex domain characteristics of subfilter algorithm. The proposed hybrid filter takes advantage of the complex nonlinear gradient descent (CNGD) algorithm that exhibits fast convergence and the steady state of the augmented complex nonlinear gradient descent (ACNGD) algorithm. The output of CNGD and ACNGD was combined to work in parallel, feeding each individual subfilter output into a mixing algorithm, which in the end produced a single hybrid filter output. The mixing parameter λ(k) within the hybrid filter architecture was made gradient adaptive in order to preserve the nature of inherent characteristics of the subfilters and to show its optimal performance in identifying and tracking second-order properness (circular) and improperness (noncircular) of the complex signals in real time. Further analysis was made on the properties of the algorithms, and the relationship between fast convergence and steady-state error was discussed. This analysis is supported by the complex-valued synthetic simulation and realworld application dataset as applied in renewable energy (wind).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.