A novel I-shaped metamaterial (ISMeTM) using split-ring resonator (SRR) for multi-band wireless communication is presented in this paper. The proposed ISMeTM unit cell structure is designed using the three-square split-ring resonators (SSRRs) and I-shaped copper strip at the center. The size of the proposed ISMeTM is 10 × 10 × 1.6 mm3 while utilizing the FR-4 dielectric substrate material. The analysis of various array arrangements, variation in the ring gap, variation in strip length, and the variation in strip width is performed to achieve the optimum results for multi-band operation. The effective permittivity, permeability, and refractive index of the unit cell have been analyzed. The design and simulation of the ISMeTM unit cell and arrays are performed using the Computer Simulation Technology (CST) Studio Suite and MATLAB. The equivalent circuit of the ISMeTM is designed using the Advanced Design System (ADS) software. The split ring’s inner loop’s gap functions as a capacitor, while the metallic ring itself functions as an inductor. Electric resonance is created by the interaction between the split ring and the electric field. The interaction of magnetic fields with metallic loops during EM propagation in the structure causes the magnetic resonance. The variation in dimensions of the structure causes the variation in the inductance and capacitance, which causes the variation in resonant frequency. The proposed design is optimized after several parametric analyses. A comprehensive analysis of 1 × 2, 2 × 2, and 2 × 4 array is also investigated. The results confirm the multi-band operation of the proposed ISMeTM. The proposed ISMeTM is suitable for the multi-band C/X/Ku-band microwave applications.
This paper presents the design of a rectangular microstrip patch antenna (MPA) using the I-shaped metamaterial (MTM) superstrate. A seven × seven array of the I-shaped MTM unit cell is used as the superstrate to enhance the antenna performance. The antenna is fed by a microstrip feeding technique and a 50 Ω coaxial connector. An in-phase electric field area is created on the top layer of the superstrate to improve the performance of the antenna. The proposed I-shaped MTM-based rectangular MPA produces three operating frequencies at 6.18 GHz, 9.65 GHz, and 11.45 GHz. The gain values of the proposed antenna at 6.18 GHz, 9.65 GHz and 11.45 GHz are 4.19 dBi, 2.4 dBi, and 5.68 dBi, respectively. The obtained bandwidth at frequencies 6.18 GHz, 9.65 GHz and 11.45 GHz are 240 MHz (3.88%), 850 MHz (8.8%), and 1010 MHz (8.82%), respectively. The design and simulation of the antenna are done using the Computer Simulation Technology (CST) studio suite and MATLAB. The proposed I-shaped MTM-based rectangular MPA is fabricated on a low-cost FR-4 substrate and measured using the Agilent 8719ET network analyzer. The proposed antenna has an overall dimension of 70 × 70 × 1.6 mm3. A significant improvement in the gain of the antenna up to 74.28% is achieved. The obtained results confirm that the proposed multiband antenna has a high gain, and enhancement in bandwidth and radiation efficiency. These properties make the proposed antenna suitable for the multiband wireless communications systems such as Wi-Fi devices, radar systems, short- and long-range tracking systems, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.