Kilit, B and Arslan, E. Effects of high-intensity interval training vs. on-court tennis training in young tennis players. J Strength Cond Res XX(X): 000-000, 2018-This study aimed to examine the effects of 6 weeks of high-intensity interval training (HIIT) vs. 6 weeks of on-court tennis training (OTT) on the psychophysiological responses, performance responses, and technical scores of young tennis players. Twenty-nine young male tennis players (aged 13.8 ± 0.4 years) were divided into HIIT (n = 14) and OTT groups (n = 15). Both groups trained for the same total training duration with passive rest in each session. Pre-test and post-test included maximum oxygen consumption (V[Combining Dot Above]O2max), sprinting, jumping, 400-m running time, a tennis-specific technical test, and the t-drill agility test. The training interventions resulted in similar improvements in V[Combining Dot Above]O2max responses (HIIT: +5.2%, d = 1.36 [large effect]; OTT: +5.5%, d = 1.50 [large effect]). Both training protocols increased jumping and sprinting performances significantly from pre-testing to post-testing (p < 0.05, d values ranging from 0.40 to 1.10). The OTT group showed significantly higher performance responses in terms of the agility test performance and technical scores (p < 0.05, d = ranging from 0.77 to 0.88 [moderate effect]) compared with the HIIT group. By contrast, the HIIT group exhibited significantly higher performance responses in terms of the 400-m running time (p < 0.05, d = 1.32 [large effect]). Our results showed that tennis-specific on-court drills might be a more effective training strategy to improve agility and technical ability with greater physical enjoyment, whereas HIIT may be more appropriate for speed-based conditioning in young tennis players.
This study aimed to investigate the effects of the 6-week small-sided games training (SSGs) vs. high-intensity interval training (HIIT) on the psychophysiological and performance responses, and technical skills of young basketball players. Thirty-two male players (age: 14.5 ± 0.5 years of age) were randomly divided into SSGs group (n = 16) and HIIT group (n = 16) training methods thrice per week for 6 weeks. The players in the SSGs group performed two 5–8 min of 2 vs. 2 with 2 min rest periods, while the players in HIIT performed 12–18 min of runs at intensities (90 to 95%) related to the velocity obtained in the 30-15 intermittent fitness test (IFT). Pre-testing and post-testing sessions involved assessments of Yo-Yo Intermittent Recovery Test level 1, 30-15 intermittent fitness test, 5 and 30 m sprint times, vertical jump height, repeated sprint ability, defensive and offensive agility, and technical skills. The SSGs group demonstrated significantly higher agility-based technical responses in terms of the control dribbling and shooting skills (d = 1.71 vs. 0.20, d = 1.41 vs. 0.35, respectively) compared with the HIIT group. Conversely, the HIIT induced greater improvements in 30 m sprint times (d = 3.15 vs. 0.68). These findings provided that SSGs in youth basketball players may allow similar positive physical adaptations to HIIT, with an extra advantage of improving technical skills while improving enjoyability.
The purpose of this study was to investigate the effects of serve and return game situations on physiological responses and match characteristics in professional male tennis players during one hour-long simulated singles tennis matches. Ten internationally ranked tennis players (age 22.2 ± 2.8 years; body height 180.7 ± 4.4 cm; body mass 75.9 ± 8.9 kg) participated in this study. Their physiological responses were measured using two portable analyzers during indoor hard court matches. Ratings of perceived exertion were also determined at the end of the game. The variables describing the characteristics of the matches determined from video recordings were: (a) duration of rallies; (b) rest time; (c) work-to-rest ratio; (d) effective playing time; and (d) strokes per rally. Significant differences (p<0.05) were found between serving and returning conditions in an hour-long simulated singles tennis match in terms of oxygen uptake, a heart rate, ratings of perceived exertion, pulmonary ventilation, respiration frequency and a respiratory gas exchange ratio. In addition, both the heart rate and ratings of perceived exertion responses were moderately correlated with the duration of rallies and strokes per rally (r = 0.60 to 0.26; p<0.05). Taken together, these results indicate that the serve game situation has a significant effect on the physiological response in an hour-long simulated tennis match between professional male tennis players. These findings might be used for the physiological adaptations required for tennis-specific aerobic endurance.
Background The aim of this study was two-fold: (i) analyze the within-group physical fitness adaptations promoted by a detraining period (4 weeks) followed by an intervention period (4 weeks) using small-sided games (SSGs) or running-based high intensity interval training (HIIT); and (ii) analyze the between-group differences aiming to identify the effectiveness of each training intervention on the physical fitness of youth male soccer players. Methods This study followed a randomized parallel study design. Forty male soccer players (age: 16.4 ± 0.5 years old) were assessed three times: (i) baseline; (ii) after 4 weeks of detraining; and (iii) after a retraining period of 4 weeks. After returning from detraining, players were randomized to an SSG-based training intervention (n = 20) or running-based HIIT (n = 20). Interventions lasted 4 weeks, with a training frequency of three sessions per week. At all timepoints, players were assessed by: (i) anthropometry (height, body mass, fat mass (FM)), countermovement jump (CMJ), standing broad jump (SBJ), triple hop jump (THJ), linear sprint test (5-, 10-, and 20-m), zig-zag test with (ZZwB) and without (ZZwoB) ball, three corner run test (3CRT), Y-balance test and the Yo-Yo intermittent recovery test level 1 (YYIRT). Mixed ANOVA (time * group) was conducted for testing interactions between the three timepoints of repeated measures and the two groups. Effect size (ES) for pairwise comparisons was calculated using Cohen’s. Results Between-group analysis revealed significantly smaller SBJ (t = −2.424, p = 0.020, d = −0.767 small ES) and THT (t = −4.353, p < 0.001, d = −1.376 large ES) in the SSG group after the retraining period. At the same time, SSG presented significantly greater FM after retraining compared to HIIT (t = 3.736, p < 0.001, d = 1.181 large ES). Additionally, SSG had significantly smaller values than HIIT in the ZZwB (t = −3.645, p < 0.001, d = −1.153 large ES), but greater times in the ZZwoB (t = 2.679, p = 0.011, d = 0.847 large ES) and 3CRT (t = 3.126, p = 0.003, d = 0.989 large ES). Conclusions Although SSG and HIIT interventions improved physical fitness outcomes after a period of detraining, they were not able to effectively restore body composition, CMJ, 20-m sprint, ZZwB, and YYIRT compared with the baseline assessments (before detraining). Only HIIT was significantly effective for restoring SBJ, short linear sprin speed, and change-of-direction compared with baseline. HIIT was also significantly better than SSG in improving SBJ and ZZwoB. Although the small sample, the non determination of maturation status and the need to be cautious regarding generalization, HIIT appears to be more beneficial than SSG after a detraining period for recovery of body composition and physical fitness qualities in this specific context of youth soccer players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.