Ultralow-frequency band gaps are realized to suppress the ultralow-frequency flexural wave propagation in the beams with periodically attached quasi-zero-stiffness (QZS) resonators, which are designed by inserting quasi-zero-stiffness systems into the mass-in-mass structures. The band structure and the transfer matrix of the QZS locally resonant beam are derived by the transfer matrix method to quantify the wave attenuation performance of band gaps. Then, the effect of the stiffness ratio on the bandgap characteristic is studied. It is shown that, thanks to the introduction of the QZS system, the band gaps can be easily transferred to lower frequency or even ultralow frequency without weakening the static stiffness of the resonators. Finally, the flexural wave propagation in locally resonant beam consisting of multiple periodic arrays of QZS resonators is investigated. The result shows that differential design of the bandgap frequencies can be easily realized by adjusting the negative stiffness coefficient of the QZS resonators, so as to obtain broadband flexural wave suppression performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.