Software failure prediction is an important activity during agile software development as it can help managers to identify the failure modules. Thus, it can reduce the test time, cost and assign testing resources efficiently. RapidMiner Studio9.4 has been used to perform all the required steps from preparing the primary data to visualizing the results and evaluating the outputs, as well as verifying and improving them in a unified environment. Two datasets are used in this work, the results for the first one indicate that the percentage of failure to predict the time used in the test is for all 181 rows, for all test times recorded, is 3% for Mean time between failures (MTBF). Whereas, SVM achieved a 97% success in predicting compared to previous work whose results indicated that the use of Administrative Delay Time (ADT) achieved a statistically significant overall success rate of 93.5%. At the same time, the second dataset result indicates that the percentage of failure to predict the time used is 1.5% for MTBF, SVM achieved 98.5% prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.