This paper presents a design approach of airfoil bearings (AFBs)fora 120 kWe gas turbine generator, which is a single spool configuration with gas generator turbine and alternator rotor connected by a diaphragm coupling. A total of four radial AFBs support the two rotors, and one set of double acting thrust foil bearing is located inside the gas generator turbine. The rotor configuration results in eight degree of freedom (DOF) rotordynamic motions, which are two cylindrical modes and two conical modes from the two rotors. Stiffness of bump foils of candidate AFB was estimated from measured structural stiffness of the bearing, and implemented to the computational model for linear stiffness and damping coefficients of the bearing and frequency-domain modal impedances for cylindrical and conical modes. Stiffness of the diaphragm coupling was evaluated using finite element analysis and implemented to nonlinear rotordynamic analyses of the entire engine. Analyses show the conical mode of the turbine rotor is the main source of instability of the entire engine when AFB clearance is not selected properly. Optimum AFB clearance is suggested from frequency domain modal analyses and nonlinear transient analyses.
This paper presents design approach of air foil bearings (AFBs) for 120kWe gas turbine generator, which is a single spool configuration with gas generator turbine and alternator rotor connected by a diaphragm coupling. Total four radial AFBs support the two rotors, and one set of double acting thrust foil bearing is located inside the gas generator turbine.
The rotor configuration results in eight degree of freedom (DOF) rotordynamic motions, which are two cylindrical modes and two conical modes from the two rotors.
Stiffness of bump foils of candidate AFB was estimated from measured structural stiffness of the bearing, and implemented to computational model for linear stiffness and damping coefficients of the bearing and frequency-domain modal impedances for cylindrical and conical modes. Stiffness of the diaphragm coupling was evaluated using finite element analysis and implemented to non-linear rotordynamic analyses of entire engine. Analyses show conical mode of turbine rotor is the main source of instability of entire engine when AFB clearance is not selected properly. Optimum AFB clearance is suggested from frequency domain modal analyses and nonlinear transient analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.