The ischemically injured kidney undergoes tubular cell necrosis and apoptosis, accompanied by an interstitial inflammatory cell infiltrate. In this study, we show that iNos-positive proinflammatory (M1) macrophages are recruited into the kidney in the first 48 hours after ischemia/reperfusion injury, whereas arginase 1-and mannose receptor-positive, noninflammatory (M2) macrophages predominate at later time points. Furthermore, depletion of macrophages before ischemia/reperfusion diminishes kidney injury, whereas depletion at 3 to 5 days after injury slows tubular cell proliferation and repair. Infusion of Ifn␥-stimulated, bone marrowderived macrophages into macrophage-depleted mice at the time of kidney reperfusion restored injury to the level seen without macrophage depletion, suggesting that proinflammatory macrophages worsen kidney damage. In contrast, the appearance of macrophages with the M2 phenotype correlated with the proliferative phase of kidney repair. In vitro studies showed that IFN␥-stimulated, proinflammatory macrophages begin to express markers of M2 macrophages when cocultured with renal tubular cells. Moreover, IL-4 -stimulated macrophages with an M2 phenotype, but not IFN␥-stimulated proinflammatory macrophages, promoted renal tubular cell proliferation. Finally, tracking fluorescently labeled, IFN␥-stimulated macrophages that were injected after injury showed that inflammatory macrophages can switch to an M2 phenotype in the kidney at the onset of kidney repair. Taken together, these studies show that macrophages undergo a switch from a proinflammatory to a trophic phenotype that supports the transition from tubule injury to tubule repair.
Aims/hypothesis Many of the effects of resveratrol are consistent with the activation of AMP-activated protein kinase (AMPK), silent information regulator T1 (SIRT1) and peroxisome proliferator-activated receptor (PPAR)γ co-activator 1α (PGC-1α), which play key roles in the regulation of lipid and glucose homeostasis, and in the control of oxidative stress. We investigated whether resveratrol has protective effects on the kidney in type 2 diabetes. Methods Four groups of male C57BLKS/J db/m and db/db mice were used in this study. Resveratrol was administered via gavage to diabetic and non-diabetic mice, starting at 8 weeks of age, for 12 weeks. Results The db/db mice treated with resveratrol had decreased albuminuria. Resveratrol ameliorated glomerular matrix expansion and inflammation. Resveratrol also lowered the NEFA and triacylglycerol content of the kidney, and this action was related to increases in the phosphorylation of AMPK and the activation of SIRT1-PGC-1α signalling and of the key downstream effectors, the PPARα-oestrogen-related receptor (ERR)-1α-sterol regulatory element-binding protein 1 (SREBP1). Furthermore, resveratrol decreased the activity of phosphatidylinositol-3 kinase (PI3K)-Akt phosphorylation and class O forkhead box (FOXO)3a phosphorylation, which resulted in a decrease in B cell leukaemia/ lymphoma 2 (BCL-2)-associated X protein (BAX) and increases in BCL-2, superoxide dismutase (SOD)1 and SOD2 production. Consequently, resveratrol reversed the increase in renal apoptotic cells and oxidative stress, as reflected by renal 8-hydroxy-deoxyguanosine (8-OH-dG), urinary 8-OH-dG and isoprostane concentrations. Resveratrol prevented high-glucose-induced oxidative stress and apoptosis in cultured mesangial cells through the phosphorylation of AMPK and activation of SIRT1-PGC-1α signalling and the downstream effectors, PPARα-ERR-1α-SREBP1. Conclusions/interpretation The results suggest that resveratrol prevents diabetic nephropathy in db/db mice by the phosphorylation of AMPK and activation of SIRT1-PGC-1α signalling, which appear to prevent lipotoxicity-related apoptosis and oxidative stress in the kidney.
Improving the ability of the kidney to tolerate ischemic injury has important implications. We investigated the effect of recombinant human erythropoietin (rHuEPO) treatment on subsequent ischemia/reperfusion (I/R) injury and evaluated the role of heat shock protein (HSP) 70 in rHuEPO-induced renal protection. rHuEPO (3000 U/kg) was administered 24 h before I/R injury, and rats were killed at 24, 48, and 72 h after I/R injury. Pretreatment of rHuEPO resulted in the following: i) decreased serum creatinine level; ii) decreased tubular cell apoptosis and necrosis, measured by DNA fragmentation analysis and TUNEL staining and histomorphological criteria; iii) decreased tubular cell proliferation as determined by proliferating cell nuclear antigen expression; iv) increased bcl-2 protein and decreased caspase 3 activity; and v) decreased JNK expression. rHuEPO treatment increased HSP70 expression in a dose-dependent manner in normal rat kidneys, and inhibition of HSP70 expression by quercetin eliminated the renoprotective effect of rHuEPO in ischemic kidneys. Our study demonstrates that rHuEPO has a protective effect on subsequent I/R injury and that this effect is associated with induction of HSP70. Our study provides a new avenue for therapy to prevent renal damage after I/R injury.
We report here our 10-year experience of a biopsy performed at day 14 after transplantation in 304 patients with stable graft function. The factors that may have influenced subclinical rejection were analyzed according to histology. The incidence of subclinical rejection was 13.2%. Addition of mycophenolate mofetile (MMF) as a primary immunosuppressant significantly decreased the incidence of subclinical rejection compared with patients without such treatment (odds ratio, 0.23; p < 0.05). On the other hand, HLA-DR antigen mismatch (odds ratio, 2.39) and unrelated donor (odds ratio, 2.10) were also significantly associated with decreased subclinical rejection (p < 0.05). The incidence of acute rejection in patients with normal findings was lower than in those with borderline changes or subclinical rejection (0.23 ± 0.05 vs. 0.48 ± 0.07 and 0.60 ± 0.11, respectively; p < 0.05). The graft survival rates in patients with subclinical rejection were lower than in patients with normal or borderline changes at 1 (88.4% vs. 97.9% and 99.1%; p < 0.05), 5 (77.8% vs. 96.2% and 95.9%; p < 0.05) and 10 (62.3% vs. 96.2% and 93.7%; p < 0.05) years. Thus, a protocol biopsy performed on day 14 after transplantation is useful for predicting graft survival. Triple therapy including MMF, related donor and HLA-DR antigen match are important factors for reducing subclinical rejection in living-donor renal transplantation.
Background. This study evaluated whether the change in the renin-angiotensin system (RAS) is associated with arterial aging in mice. Methods. Histologic changes and expressions of transforming growth factor-β (TGF-β), collagen IV, fibronectin, angiotensin II (Ang II), angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), angiotensin II type 1 receptor (AT1R), angiotensin II type 2 receptor (AT2R), prorenin receptor (PRR), Mas receptor (MasR), endothelial nitric oxide synthase (eNOS), NADPH oxidase 2 and oxidase 4 (Nox2 and Nox4), 8-hydroxy-2′-deoxyguanosine (8-OHdG), 3-nitrotyrosine, and superoxide dismutase 1 and dismutase 2 (SOD1 and SOD2) were measured in the thoracic aortas from 2-month-old, 12-month-old, and 24-month-old C57/BL6 mice. Results. Twenty-four-month-old mice showed significantly increased aortic media thickness and expressions of TGF-β, collagen IV, and fibronectin, compared to 2-month-old and 12-month-old mice. The expressions of PRR, ACE, and Ang II, and AT1R-positive area significantly increased, whereas expressions of ACE2 and MasR and AT2R-positive area decreased with age. The expressions of phosphorylated serine1177-eNOS, SOD1, and SOD2 decreased, and the 8-OHdG-positive area and the 3-nitrotyrosine-positive area increased with age. The expression of Nox2 significantly increased with age, but that of Nox4 did not change. Conclusions. The enhanced PRR-ACE-Ang II-AT1R axis and reduced ACE2-MasR axis were associated with arterial aging in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.