The effects of an electric supercharger (eS) and a dual-loop exhaust gas recirculation (EGR) system on a passenger car’s diesel engine’s emissions and fuel efficiency under various worldwide harmonized light-duty vehicles test procedure (WLTP) reference operation points were investigated using a one-dimensional engine cycle simulation, called GT-Power. After heavy EGR application, the in-cylinder pressure and temperature declined due to a dilution effect. As eS power and rpm increased, the brake-specific fuel consumption (BSFC) decreased because the effects of the air flow rate increased. However, it was unavoidable that nitrogen oxide (NOx) emissions also increased due to the higher in-cylinder pressure and temperature. To induce more EGR to the intake system, a dual-loop EGR system was applied with eS at different low-pressure EGR (LP-EGR) fractions (0, 0.25, 0.5, 0.75, and 1.0). Under these conditions, a design of experiment (DoE) procedure was carried out and response surface plots of the BSFC and brake-specific NOx (BSNOx) were prepared. A multi-objective Pareto optimization method was used to improve the trade-off in results between the BSFC and BSNOx. Through optimization, optimal Pareto fronts were obtained, which suggested design parameters for eS power and rpm to control the engine under various LP fraction conditions.
Hydrogen-based engines are progressively becoming more important with the increasing utilization of hydrogen and layouts (e.g., onboard reforming systems) in internal combustion engines. To investigate the possibility of HICE (hydrogen fueled internal combustion engine), such as an engine with an onboard reforming system, which is introduced as recent technologies, various operating areas and parameters should be considered to obtain feasible hydrogen contents itself. In this study, a virtual hydrogen-added compressed natural gas (HCNG) model is built from a modified 11-L CNG (Compressed Natural Gas) engine, and a response surface model is derived through a parametric study via the Latin hypercube sampling method. Based on the results, performance and emission trends relative to hydrogen in the HCNG engine system are suggested. The operating conditions are 1000, 1300, and 1500 rpm under full load. For the Latin hypercube sampling method, the dominant variables include spark timing, excess air ratio (i.e., λCH4+H2), and H2 addition. Under target operating conditions of 1000, 1300, and 1500 rpm, the addition of 6–10% hydrogen enables the virtual HCNG engine to reach similar levels of torque and BSFC (brake specific fuel consumption) compared to same lambda condition of λCH4. For the relatively low 1000 rpm speed under conditions similar to those of the base engine, NOx formation is greater than base engine condition, while a similar NOx level can be maintained under the middle speed range (1300 and 1500 rpm) despite hydrogen addition. Upon addition of 6–10% hydrogen under the middle speed operation range, the target engine achieves performance and emission similar to those of the base engine.
The reduction of the weight of the engine of a vessel or an automobile can result in improved engine efficiency and lower CO2 emissions. Therefore, this study was conducted to improve the mechanical properties of the AC4CH alloy, an alternative to cast iron for engine fabrication, through the addition of Si and Mg to aluminum. The mechanical properties of the alloy were improved through refinement of the Si structure, grain refinement, and heat treatment. In addition, the applicability of a cylinder block fabricated with the modified AC4CH alloy to a diesel engine was validated through a 300 h durability test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.