The extraordinary electronic properties of graphene provided the main thrusts for the rapid advance of graphene electronics. In photonics, the gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of photons with graphene, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications owing to its non-resonant Drude-like behaviour. Here, we demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances of the metamaterial. Although the thickness of the embedded single-layer graphene is more than six orders of magnitude smaller than the wavelength (<λ/1,000,000), the one-atom-thick layer, in conjunction with the metamaterial, can modulate both the amplitude of the transmitted wave by up to 47% and its phase by 32.2° at room temperature. More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, which is indicative of persistent photonic memory effects.
Controlling the electromagnetic properties of materials, going beyond the limit that is attainable with naturally existing substances, has become a reality with the advent of metamaterials. The range of various structured artificial 'atoms' has promised a vast variety of otherwise unexpected physical phenomena, among which the experimental realization of a negative refractive index has been one of the main foci thus far. Expanding the refractive index into a high positive regime will complete the spectrum of achievable refractive index and provide more design flexibility for transformation optics. Naturally existing transparent materials possess small positive indices of refraction, except for a few semiconductors and insulators, such as lead sulphide or strontium titanate, that exhibit a rather high peak refractive index at mid- and far-infrared frequencies. Previous approaches using metamaterials were not successful in realizing broadband high refractive indices. A broadband high-refractive-index metamaterial structure was theoretically investigated only recently, but the proposed structure does not lend itself to easy implementation. Here we demonstrate that a broadband, extremely high index of refraction can be realized from large-area, free-standing, flexible terahertz metamaterials composed of strongly coupled unit cells. By drastically increasing the effective permittivity through strong capacitive coupling and decreasing the diamagnetic response with a thin metallic structure in the unit cell, a peak refractive index of 38.6 along with a low-frequency quasi-static value of over 20 were experimentally realized for a single-layer terahertz metamaterial, while maintaining low losses. As a natural extension of these single-layer metamaterials, we fabricated quasi-three-dimensional high-refractive-index metamaterials, and obtained a maximum bulk refractive index of 33.2 along with a value of around 8 at the quasi-static limit.
Surface plasmon polaritons (SPPs) are electron density waves excited at the interfaces between metals and dielectric materials. Owing to their highly localized electromagnetic fields, they may be used for the transport and manipulation of photons on subwavelength scales. In particular, plasmonic resonant cavities represent an application that could exploit this field compression to create ultrasmall-mode-volume devices. A key figure of merit in this regard is the ratio of cavity quality factor, Q (related to the dissipation rate of photons confined to the cavity), to cavity mode volume, V (refs 10, 11). However, plasmonic cavity Q factors have so far been limited to values less than 100 both for visible and near-infrared wavelengths. Significantly, such values are far below the theoretically achievable Q factors for plasmonic resonant structures. Here we demonstrate a high-Q SPP whispering-gallery microcavity that is made by coating the surface of a high-Q silica microresonator with a thin layer of a noble metal. Using this structure, Q factors of 1,376 +/- 65 can be achieved in the near infrared for surface-plasmonic whispering-gallery modes at room temperature. This nearly ideal value, which is close to the theoretical metal-loss-limited Q factor, is attributed to the suppression and minimization of radiation and scattering losses that are made possible by the geometrical structure and the fabrication method. The SPP eigenmodes, as well as the dielectric eigenmodes, are confined within the whispering-gallery microcavity and accessed evanescently using a single strand of low-loss, tapered optical waveguide. This coupling scheme provides a convenient way of selectively exciting and probing confined SPP eigenmodes. Up to 49.7 per cent of input power is coupled by phase-matching control between the microcavity SPP and the tapered fibre eigenmodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.