In this study, pre-impact fall detection algorithms were developed based on data gathered by a custom-made inertial measurement unit (IMU). Four types of simulated falls were performed by 40 healthy subjects (age: 23.4 ± 4.4 years). The IMU recorded acceleration and angular velocity during all activities. Acceleration, angular velocity, and trunk inclination thresholds were set to 0.9 g, 47.3°/s, and 24.7°, respectively, for a pre-impact fall detection algorithm using vertical angles (VA algorithm); and 0.9 g, 47.3°/s, and 0.19, respectively, for an algorithm using the triangle feature (TF algorithm). The algorithms were validated by the results of a blind test using four types of simulated falls and six types of activities of daily living (ADL). VA and TF algorithms resulted in lead times of 401 ± 46.9 ms and 427 ± 45.9 ms, respectively. Both algorithms were able to detect falls with 100% accuracy. The performance of the algorithms was evaluated using a public dataset. Both algorithms detected every fall in the SisFall dataset with 100% sensitivity). The VA algorithm had a specificity of 78.3%, and TF algorithm had a specificity of 83.9%. The algorithms had higher specificity when interpreting data from elderly subjects. This study showed that algorithms using angles could more accurately detect falls. Public datasets are needed to improve the accuracy of the algorithms.
Fall-related injury is a common cause of mortality among the elderly. Hip fractures are especially dangerous and can even be fatal. In this study, a threshold-based preimpact fall detection algorithm was developed for wearable airbags that minimize the impact of falls on the user’s body. Acceleration sum vector magnitude (SVM), angular velocity SVM, and vertical angle, calculated using inertial data captured from an inertial measurement unit were used to develop the algorithm. To calculate the vertical angle accurately, a complementary filter with a proportional integral controller was used to minimize integration errors and the effect of external impacts. In total, 30 healthy young men were recruited to simulate 6 types of falls and 14 activities of daily life. The developed algorithm achieved 100% sensitivity, 97.54% specificity, 98.33% accuracy, and an average lead time (i.e., the time between the fall detection and the collision) of 280.25 ± 10.29 ms with our experimental data, whereas it achieved 96.1% sensitivity, 90.5% specificity, and 92.4% accuracy with the SisFall public dataset. This paper demonstrates that the algorithm achieved a high accuracy using our experimental data, which included some highly dynamic motions that had not been tested previously.
In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additional training with external data). Three-axis acceleration and angular velocity data were obtained from 30 healthy male subjects by attaching an IMU to the middle of the left and right anterior superior iliac spines (ASIS). Internal and external tests were performed using our lab dataset and SisFall public dataset, respectively. The results showed that ANN and SVM were suitable for the time-series and discrete data, respectively. The classification performance generally decreased, and thus, specific feature vectors from the raw data were necessary when untrained motions were tested using a public dataset. Normalization made SVM and ANN more and less effective, respectively. Equalization increased the sensitivity, even though it did not improve the overall performance. The increase in the number of training data also improved the classification performance. Machine learning was vulnerable to untrained motions, and data of various movements were needed for the training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.