Alu elements are transposable elements that can influence gene regulation through several mechanisms; nevertheless, it remains unclear whether dysregulation of Alu elements contributes to the neuropathology of autism spectrum disorder (ASD). In this study, we characterized transposable element expression profiles and their sequence characteristics in the prefrontal cortex tissues of ASD and unaffected individuals using RNA-sequencing data. Our results showed that most of the differentially expressed transposable elements belong to the Alu family, with 659 loci of Alu elements corresponding to 456 differentially expressed genes in the prefrontal cortex of ASD individuals. We predicted cis- and trans-regulation of Alu elements to host/distant genes by conducting correlation analyses. The expression level of Alu elements correlated significantly with 133 host genes (cis-regulation, adjusted p < 0.05) associated with ASD as well as the cell survival and cell death of neuronal cells. Transcription factor binding sites in the promoter regions of differentially expressed Alu elements are conserved and associated with autism candidate genes, including RORA. COBRA analyses of postmortem brain tissues showed significant hypomethylation in global methylation analyses of Alu elements in ASD subphenotypes as well as DNA methylation of Alu elements located near the RNF-135 gene (p < 0.05). In addition, we found that neuronal cell density, which was significantly increased (p = 0.042), correlated with the expression of genes associated with Alu elements in the prefrontal cortex of ASD. Finally, we determined a relationship between these findings and the ASD severity (i.e., ADI-R scores) of individuals with ASD. Our findings provide a better understanding of the impact of Alu elements on gene regulation and molecular neuropathology in the brain tissues of ASD individuals, which deserves further investigation.
The extracellular matrix (ECM) plays crucial roles in the anterior pituitary gland via the mechanism of cell–ECM interaction. Since bisphenol A (BPA), a well-known endocrine disruptor, can cross through the placenta from mother to fetus and bind with estrogen receptors, cell populations in the neonatal anterior pituitary gland could be the target cells affected by this chemical. The present study treated maternal rats with 5000 µg/kg body weight of BPA daily throughout the pregnancy period and then investigated the changes in ECM-producing cells, i.e., pericytes and folliculostellate (FS) cells, including their ECM production in the neonatal anterior pituitary at Day 1. We found that pericytes and their collagen synthesis reduced, consistent with the increase in the number of FS cells that expressed several ECM regulators—matrix metalloproteinase (MMP) 9 and the tissue inhibitors of metalloproteinase (TIMP) family. The relative MMP9/TIMP1 ratio was extremely high, indicating that the control of ECM homeostasis was unbalanced. Moreover, transmission electron microscopy showed the unorganized cell cluster in the BPA-treated group. This study revealed that although the mother received BPA at the “no observed adverse effect” level, alterations in ECM-producing cells as well as collagen and the related ECM balancing genes occurred in the neonatal anterior pituitary gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.