P-glycoprotein is an ATP-binding cassette multidrug transporter that actively transports chemically diverse substrates across the lipid bilayer. The precise molecular mechanism underlying transport is not fully understood. Here, we present crystal structures of a eukaryotic P-glycoprotein homolog, CmABCB1 from Cyanidioschyzon merolae, in two forms: unbound at 2.6-Å resolution and bound to a unique allosteric inhibitor at 2.4-Å resolution. The inhibitor clamps the transmembrane helices from the outside, fixing the CmABCB1 structure in an inward-open conformation similar to the unbound structure, confirming that an outward-opening motion is required for ATP hydrolysis cycle. These structures, along with site-directed mutagenesis and transporter activity measurements, reveal the detailed architecture of the transporter, including a gate that opens to extracellular side and two gates that open to intramembranous region and the cytosolic side. We propose that the motion of the nucleotide-binding domain drives those gating apparatuses via two short intracellular helices, IH1 and IH2, and two transmembrane helices, TM2 and TM5. multidrug resistance | ABC transporter | membrane protein | X-ray crystallography | macrocyclic peptide M ultidrug transporters of the ATP-binding cassette (ABC) superfamily, such as P-glycoprotein (P-gp; MDR1; ABCB1), MRP1 (ABCC1), and ABCG2 (BCRP), transport a large number of structurally unrelated compounds with molecular weights ranging up to several thousand Daltons (1, 2). These transporters not only play important roles in normal physiology by protecting tissues from various toxic xenobiotics and endogenous metabolites but also contribute to multidrug resistance (MDR) in tumors, a major obstacle to effective chemotherapeutic treatment (1, 3-7). Their functional forms consist of a minimum of four core domains: two transmembrane domains (TMDs) that create the translocation pathway for substrates and two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP to power the transport process (8, 9). These four domains can exist either as two separate polypeptides (half-size) or fused together in a single large polypeptide with an internal duplication (full-size). The crystal structures of mouse and nematode P-gps, as well as their bacterial homologs (10-14), have been determined, and they have provided important insights into the relationships between protein structure and the functional and biochemical characteristics of P-gp. However, the detailed architecture of the TMD machinery and the gating mechanism during the transition between the inward-and outward-open states are poorly understood.Here, we report the structures of a eukaryotic P-gp homolog, unlocked (at 2.6-Å resolution) and locked allosterically with a tailor-made peptide at 2.4-Å resolution. Although CmABCB1 is not a full-length ABC transporter but a half-sized ABC transporter adopting a homodimeric architecture, CmABCB1 showed quite similar functional properties to those of human P-gp (hP-gp). Based on these structures, we...
D22-Unsaturated sterols, containing a double bond at the C-22 position in the side chain, occur specifically in fungi and plants. Here, we describe the identification and characterization of cytochrome P450s belonging to the CYP710A family as the plant C-22 desaturase. Recombinant proteins of CYP710A1 and CYP710A2 from Arabidopsis thaliana and CYP710A11 from tomato (Lycopersicon esculentum) were expressed using a baculovirus/insect system. The Arabidopsis CYP710A1 and tomato CYP710A11 proteins exhibited C-22 desaturase activity with b-sitosterol to produce stigmasterol (CYP710A1, K m ¼ 1.0 mM and kinetic constant [k cat ] ¼ 0.53 min ÿ1 ; CYP710A11, K m ¼ 3.7 mM and k cat ¼ 10 min ÿ1 ). In Arabidopsis transgenic lines with CYP710A1 and CYP710A11 overexpression, stigmasterol levels increased by 6-to 32-fold. Arabidopsis CYP710A2 was able to produce brassicasterol and stigmasterol from 24-epi-campesterol and b-sitosterol, respectively. Sterol profiling analyses for CYP710A2 overexpression and a T-DNA insertion event into CYP710A2 clearly demonstrated in planta that CYP710A2 was responsible for both brassicasterol and stigmasterol production. Semiquantitative PCR analyses and promoter:b-glucuronidase transgenic approaches indicated strict tissue/organ-specific regulation for each CYP710A gene, implicating differential tissue distributions of the D 22 -unsaturated sterols in Arabidopsis. Our results support the possibility that the CYP710 family may encode P450s of sterol C-22 desaturases in different organisms.
Brassinosteroids (BRs) are biosynthesized from campesterol via several cytochrome P450 (P450)-catalyzed oxidative reactions. We report the functional characterization of two BR-biosynthetic P450s from Arabidopsis thaliana: CYP90C1/ ROTUNDIFOLIA3 and CYP90D1. The cyp90c1 cyp90d1 double mutant exhibits the characteristic BR-deficient dwarf phenotype, although the individual mutants do not display this phenotype. These data suggest redundant roles for these P450s. In vitro biochemical assays using insect cell-expressed proteins revealed that both CYP90C1 and CYP90D1 catalyze C-23 hydroxylation of various 22-hydroxylated BRs with markedly different catalytic efficiencies. Both enzymes preferentially convert 3-epi-6-deoxocathasterone, (22S,24R)-22-hydroxy-5a-ergostan-3-one, and (22S,24R)-22-hydroxyergost-4-en-3-one to 23-hydroxylated products, whereas they are less active on 6-deoxocathasterone. Likewise, cyp90c1 cyp90d1 plants were deficient in 23-hydroxylated BRs, and in feeding experiments using exogenously supplied intermediates, only 23-hydroxylated BRs rescued the growth deficiency of the cyp90c1 cyp90d1 mutant. Thus, CYP90C1 and CYP90D1 are redundant BR C-23 hydroxylases. Moreover, their preferential substrates are present in the endogenous Arabidopsis BR pool. Based on these results, we propose C-23 hydroxylation shortcuts that bypass campestanol, 6-deoxocathasterone, and 6-deoxoteasterone and lead directly from (22S,24R)-22-hydroxy-5a-ergostan-3-one and 3-epi-6-deoxocathasterone to 3-dehydro-6-deoxoteasterone and 6-deoxotyphasterol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.