Shallow flow past successive cavities is characterized by means of high-image-density particle image velocimetry (PIV). Highly coherent, self-sustained oscillations arise due to coupling between the inherent instability of the separated shear layer along the opening of each sequential cavity; and a gravity standing wave mode within each cavity. The globally coupled nature of the flow structure is evident through dominance of the same spectral component in the undulating vorticity layers along each of the successive cavities and the wall pressure fluctuations within the cavities. Unlike coupled phenomena associated with flow past a single cavity, optimal coupling for successive cavities requires a defined phase shift between the gravity standing wave patterns in adjacent cavities and, furthermore, an overall phase shift of the undulating shear layer along the cavity openings. The magnitudes of these phase shifts depend on the mode of the gravity standing wave in each cavity, i.e. longitudinal or transverse mode, which is respectively aligned with or normal to the main stream. Such phase shifts result in corresponding displacements of patterns of phase-referenced vorticity concentrations along the cavity openings and changes in the timing of impingement of these concentrations upon the downstream corners of successive cavities. All of the foregoing aspects are related to the unsteady recirculation flow within the cavity, the time-dependent streamline topology, and concentrations of Reynolds stress along the cavity opening.
The control of transition from a laminar to a turbulent flow over a flat plate using localized dynamic surface modifications was explored experimentally in Rensselaer Polytechnic Institute’s subsonic wind tunnel. Dynamic surface modification, via a pair of Piezoelectrically Driven Oscillating Surface (PDOS) actuators, was used to excite and control the T-S wave over a flat plate. Creating an upstream, localized small disturbance at the most amplified frequency of fact = 250 Hz led to phase-locking the T-S wave. This enabled observation of the excited T-S wave using phase-locked stereoscopic particle image velocimetry. The growth of the T-S wave as it moved downstream was also measured using this technique (25% growth over four wavelengths of the excited wave). Activation of a downstream PDOS actuator (in addition to the upstream PDOS) at the appropriate amplitude and phase shift resulted in attenuation of the peak amplitude of the coherent velocity fluctuations (by up to 68%) and a substantial reduction of the degree of coherence of the T-S wave. Since the PDOS actuators used in this work were localized, the effect of the control strategy was confined to the region directly downstream of the PDOS actuator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.