OBJECTIVE To determine the pharmacokinetics of meloxicam after single IV and IM injections in red-eared slider turtles (Trachemys scripta elegans). ANIMALS 8 healthy red-eared slider turtles. PROCEDURES Turtles received 1 dose of meloxicam (0.2 mg/kg) IV or IM (4 turtles/route), a 30-day washout period was provided, and then turtles received the same dose by the opposite route. Blood samples were collected at predetermined times for measurement of plasma meloxicam concentration. Pharmacokinetic values for each administration route were determined with a 2-compartment open model approach. RESULTS For IV administration, mean ± SD values of major pharmacokinetic variables were 1.02 ± 0.41 hours for distribution half-life, 9.78 ± 2.23 hours for elimination half-life, 215 ± 32 mL/kg for volume of distribution at steady state, 11.27 ± 1.44 μg•h/mL for area under the plasma concentration versus time curve, and 18.00 ± 2.32 mL/h/kg for total body clearance. For IM administration, mean values were 0.35 ± 0.06 hours for absorption half-life, 0.72 ± 0.06 μg/mL for peak plasma concentration, 1.5 ± 0.0 hours for time to peak concentration, 3.73 ± 2.41 hours for distribution half-life, 13.53 ± 1.95 hours for elimination half-life, 11.33 ± 0.92 μg•h/mL for area under the plasma concentration versus time curve, and 101 ± 6% for bioavailability. No adverse reactions were detected. CONCLUSIONS AND CLINICAL RELEVANCE Long half-life, high bioavailability, and lack of immediate adverse reactions of meloxicam administered IM at 0.2 mg/kg suggested the possibility of safe and effective clinical use in turtles. Additional studies are needed to establish appropriate administration frequency and clinical efficacy.
The aim of this research was to compare plasma pharmacokinetics of ceftiofur sodium (CS) in healthy calves, and in calves with experimentally induced endotoxemia. Six calves received CS (2.2 mg/kg, IM) 2 hr after intravenous administration of 0.9% NaCl (Ceft group). After a washout period, the same 6 calves received CS 2 hr after intravenous injection of lipopolysaccharide (LPS+Ceft group). Another group of 6 calves received a combination of drug therapies that included CS 2 hr after administration of 0.9% NaCl (Comb group). A third group of 6 calves received the same combination therapy regimen 2 hr after intravenous injection of lipopolysaccharide (LPS+Comb group). Plasma concentrations of CS and all desfuroylceftiofur-related metabolites were determined using HPLC, and its pharmacokinetic properties were determined based on a two-compartment model. The peak concentration of CS in the LPS+Comb group occurred the earliest, and the clearance rate of CS was the highest in the Comb and LPS+Comb groups (P<0.05). The elimination half-life of CS in the LPS+Ceft group was longer than that in the Ceft and Comb groups (P<0.05). The results of this study indicate that combined therapies and endotoxemic status may alter the plasma pharmacokinetics of CS in calves.
The aim of this study was to determine the cardiotoxic potency of tulathromycin. Tulathromycin (10 mg/kg, SC) was administered to ten adult male rabbits, and blood samples were obtained before and after drug administration (0 and 6 hours). Serum cardiac damage markers (troponin I, creatine kinase-MB, myoglobin, lactate dehydrogenase, aspartate aminotransferase), routine serum biochemical values (alkaline phosphatase, alanine aminotransferase, gamma-glutamyltransferase, creatinine, blood urea nitrogen, cholesterol, triglyceride, high-density lipoprotein, amylase, total protein, albumin, glucose, calcium, ionised calcium, sodium, potassium), white blood cell (WBC) and red blood cell (RBC) counts, arterial blood gas parameters (pH, partial carbon dioxide pressure, partial oxygen pressure, actual bicarbonate, standard bicarbonate, total carbon dioxide, base excess in vivo, base excess in vitro, oxygen saturation, packed cell volume, haemoglobin) and serum oxidative status (malondialdehyde, nitric oxide, superoxide dismutase, retinol, β-carotene) were measured. Increased levels of troponin I, creatine kinase-MB and creatinine, and decreased WBC counts, ionised calcium and potassium levels were observed after drug administration. Tulathromycin treatment may cause cardiotoxicity, but its effects may be less dramatic than those of other macrolide antibiotics frequently used in veterinary medicine.
The aim of the present study was to determine the effects of florfenicol on the expected changes in sTNF-α, damage markers of the liver and kidney, and the lipid metabolism parameters in endotoxemic brown trout. Ninety-six brown trout were included in this study. After six of the fish were reserved as the control group, the remaining 90 fish were divided equally into 3 groups as follows: LPS (2 mg/kg, IP), LPS (2 mg/kg, IP) + florfenicol (40 mg/kg, IM), and florfenicol (40 mg/kg, IM). Blood samples were obtained from the tail of the fish at 1.5, 3, 6, 10, and 24 hours. The levels of sTNF-α were determined by ELISA and biochemical markers were evaluated with an autoanalyzer. A significant increase was observed in the values of sTNF-α in the LPS and LPS + florfenicol groups (P < 0.05). Significant increases were found in the kidney and liver damage determinants in the LPS and LPS + florfenicol groups (P < 0.05). Irregular changes in the lipid metabolism parameters were observed in all the subgroups. In conclusion, florfenicol does not affect the increases of sTNF-α caused by LPS and does not prevent liver or kidney damage; at least, it can be said that florfenicol does not have any evident positive effects on the acute endotoxemia of fish.
The purpose of this study was to evaluate the pharmacokinetics of cefquinome (CFQ) following single intravenous (IV) or intramuscular (IM) injections of 2 mg/kg body weight in red-eared slider turtles. Plasma concentrations of CFQ were determined by high-performance liquid chromatography and analyzed using noncompartmental methods. The pharmacokinetic parameters following IV injection were as follows: , and total body clearance (Cl T ) 12.66 ± 2.51 ml hr −1 kg −1. The pharmacokinetic parameters after IM injection were as follows: peak plasma concentration (C max ) 3.94 ± 0.84 μg/ml, time to peak concentration (T max ) 3 hr, t 1/2λz26.90 ± 4.33 hr, and AUC 0-∞ 145 ± 48 μg hr −1 ml −1. The bioavailability after IM injection was 88%. Data suggest that CFQ has a favorable pharmacokinetic profile with a long half-life and a high bioavailability in red-eared slider turtles. Further studies are needed to establish a multiple dosage regimen and evaluate clinical efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.