This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
In this study, Al–Cu-based three-layered metal matrix composites reinforced with TiC particles were produced successfully by a conventional hot pressing method under argon (Ar) atmosphere. To evaluate the effect of heat treatment, the composites were treated for 24 h at 530°C and then aged in an oil bath at 180°C for various aging periods. The multi-layered composite was characterized by SEM, EDS, XRD, and the Vickers microhardness test. It was concluded that the peak hardness for the multi-layered composite was observed, when the aging period was extended up to approximately 12 h. The hardness of the middle layer increased from approximately 140 to 291 HV within 12 h. The corrosion resistance of the composites decreased with increasing aging time and some preferential corrosion attack was detected in the composite layers. In addition, it was found that the pitting susceptibility of unaged composites was also higher than that of all the aged specimens.
Polylactic acid (PLA)/silica composites as multifunctional high-performance materials have been extensively examined in the past few years by virtue of their outstanding properties relative to neat PLA. The fabrication methods, such as melt-mixing, sol–gel, and in situ polymerization, as well as the surface functionalization of silica, used to improve the dispersion of silica in the polymer matrix are outlined. The rheological, thermal, mechanical, and biodegradation properties of PLA/silica nanocomposites are highlighted. The potential applications arising from the addition of silica nanoparticles into the PLA matrix are also described. Finally, we believe that a better understanding of the role of silica additive with current improvement strategies in the dispersion of this additive in the polymer matrix is the key for successful utilization of PLA/silica nanocomposites and to maximize their fit with industrial applications needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.