Abstract. Data in object-oriented programming is organized in a hierarchy of classes. The problem of object-oriented pattern matching is how to explore this hierarchy from the outside. This usually involves classifying objects by their run-time type, accessing their members, or determining some other characteristic of a group of objects. In this paper we compare six different pattern matching techniques: object-oriented decomposition, visitors, type-tests/type-casts, typecase, case classes, and extractors. The techniques are compared on nine criteria related to conciseness, maintainability and performance. The paper introduces case classes and extractors as two new pattern-matching methods and shows that their combination works well for all of the established criteria.
Pattern matching makes ML programs more concise and readable, and these qualities are also sought in object-oriented settings. However, objects and classes come with open class hierarchies, extensibility requirements and the need for data abstraction, which all conflict with matching on concrete data types. Extractor-based pattern matching has been proposed to address this conflict. Extractors are user-defined methods that perform the task of value discrimination and deconstruction during pattern matching. In this paper, we give the first formalization of extractor-based matching, using a first-order object-oriented calculus. We give a direct operational semantics and prove it sound. We then present an optimizing translation to a target language without matching, and prove a correctness result stating that an expression is equivalent to its translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.