Objective Transcranial direct current stimulation (tDCS) aims to alter brain function noninvasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical currents to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus pattern for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. In-depth comparison study gives insight into the relationship between different objective criteria and optimized stimulus patterns. In addition, the analysis of the interaction between optimized stimulus patterns and safety constraint bounds suggests that more precise current localization in the ROI, with supposably improved safety criterion, may be achieved by careful selection of the constraint bounds.
Cardiac electrical imaging from body surface potential measurements is increasingly being seen as a technology with the potential for use in the clinic, for example for pre-procedure planning or during-treatment guidance for ventricular arrhythmia ablation procedures. However several important impediments to widespread adoption of this technology remain to be effectively overcome. Here we address two of these impediments: the difficulty of reconstructing electric potentials on the inner (endocardial) as well as outer (epicardial) surfaces of the ventricles, and the need for full anatomical imaging of the subject’s thorax to build an accurate subject-specific geometry. We introduce two new features in our reconstruction algorithm: a non-linear low-order dynamic parameterization derived from the measured body surface signals, and a technique to jointly regularize both surfaces. With these methodological innovations in combination, it is possible to reconstruct endocardial activation from clinically acquired measurements with an imprecise thorax geometry. In particular we test the method using body surface potentials acquired from three subjects during clinical procedures where the subjects’ hearts were paced on their endocardia using a catheter device. Our geometric models were constructed using a set of CT scans limited in axial extent to the immediate region near the heart. The catheter system provides a reference location to which we compare our results. We compare our estimates of pacing site localization, in terms of both accuracy and stability, to those reported in a recent clinical publication [1], where a full set of CT scans were available and only epicardial potentials were reconstructed.
This work proposes a novel approach for motion-robust diffusion-weighted (DW) brain MRI reconstruction through tracking temporal head motion using slice-to-volume registration. The slice-level motion is estimated through a filtering approach that allows tracking the head motion during the scan and correcting for out-of-plane inconsistency in the acquired images. Diffusion-sensitized image slices are registered to a base volume sequentially over time in the acquisition order where an outlier-robust Kalman filter, coupled with slice-to-volume registration, estimates head motion parameters. Diffusion gradient directions are corrected for the aligned DWI slices based on the computed rotation parameters and the diffusion tensors are directly estimated from the corrected data at each voxel using weighted linear least squares. The method was evaluated in DWI scans of adult volunteers who deliberately moved during scans as well as clinical DWI of 28 neonates and children with different types of motion. Experimental results showed marked improvements in DWI reconstruction using the proposed method compared to the state-of-the-art DWI analysis based on volume-to-volume registration. This approach can be readily used to retrieve information from motion-corrupted DW imaging data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.