Polynomial coding has been proposed as a solution to the straggler mitigation problem in distributed matrix multiplication. Previous works employ univariate polynomials to encode matrix partitions. Such schemes greatly improve the speed of distributed computing systems by making the task completion time to depend only on the fastest workers. However, they completely ignore the work done by the slowest workers resulting in inefficient use of computing resources. In order to exploit the partial computations of the slower workers, we further decompose the overall matrix multiplication task into even smaller subtasks, and we propose bivariate polynomial codes. We show that these codes are a more natural choice to accommodate the additional decomposition of subtasks, and to exploit the heterogeneous storage and computation resources at workers. However, in contrast to univariate polynomial decoding, guarantying decodability with multivariate interpolation is much harder. We propose two bivariate polynomial coding schemes and study their decodability conditions. Our numerical results show that bivariate polynomial coding considerably reduces the computation time of distributed matrix multiplication.
We present a field trial of NFV Orchestration over multi-layer packet and disaggregated optical network testbed to demonstrate crowdsourced video streaming use case. We show the average service creation time is under 5 minutes, which meets the KPI as defined by 5G PPP.
In conventional federated learning (FL), differential privacy (DP) guarantees can be obtained by injecting additional noise to local model updates before transmitting to the parameter server (PS). In the wireless FL scenario, we show that the privacy of the system can be boosted by exploiting over-theair computation (OAC) and anonymizing the transmitting devices. In OAC, devices transmit their model updates simultaneously and in an uncoded fashion, resulting in a much more efficient use of the available spectrum. We further exploit OAC to provide anonymity for the transmitting devices. The proposed approach improves the performance of private wireless FL by reducing the amount of noise that must be injected.
We consider collaborative inference at the wireless edge, where each client's model is trained independently on their local datasets. Clients are queried in parallel to make an accurate decision collaboratively. In addition to maximizing the inference accuracy, we also want to ensure the privacy of local models. To this end, we leverage the superposition property of the multiple access channel to implement bandwidth-efficient multi-user inference methods. Specifically, we propose different methods for ensemble and multi-view classification that exploit over-the-air computation. We show that these schemes perform better than their orthogonal counterparts with statistically significant differences while using fewer resources and providing privacy guarantees. We also provide experimental results verifying the benefits of the proposed over-the-air multi-user inference approach and perform an ablation study to demonstrate the effectiveness of our design choices. We share the source code of the framework publicly on Github to facilitate further research and reproducibility.
We consider the problem of private distributed matrix multiplication under limited resources. Coded computation has been shown to be an effective solution in distributed matrix multiplication, both providing privacy against the workers and boosting the computation speed by efficiently mitigating stragglers. In this work, we propose the use of recently-introduced bivariate polynomial codes to further speed up private distributed matrix multiplication by exploiting the partial work done by the stragglers rather than completely ignoring them. We show that the proposed approach significantly reduces the average computation time of private distributed matrix multiplication compared to its competitors in the literature, while improving the upload communication cost and the workers' storage efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.