In this study, a hesitant fuzzy AHP method is presented to help decision makers (DMs), especially policymakers, governors, and physicians, evaluate the importance of intervention strategy alternatives applied by various countries for the COVID-19 pandemic. In this research, a hesitant fuzzy multicriteria decision making (MCDM) method, hesitant fuzzy Analytic Hierarchy Process (hesitant F-AHP), is implemented to make pairwise comparison of COVID-19 country-level intervention strategies applied by various countries and determine relative importance scores. An illustrative study is presented where fifteen intervention strategies applied by various countries in the world during the COVID-19 pandemic are evaluated by seven physicians (a professor of infectious diseases and clinical microbiology, an infectious disease physician, a clinical microbiology physician, two internal medicine physicians, an anesthesiology and reanimation physician, and a family physician) in Turkey who act as DMs in the process.
Planning, organizing, and managing water resources is crucial for urban areas and metropolitans. Istanbul is one of the largest megacities, with a population of over 15 million. The large volume of water demand and increasing scarcity of clean water resources make long-term planning necessary for this city, as sustained water supply requires large-scale investment projects. Successful investment plans require accurate projections and forecasting for freshwater demand. This study considers different machine learning methods for freshwater demand forecasting for Istanbul. Using monthly consumption data provided by the municipality since 2009, we compare forecasting accuracies of ARIMA, Holt-Winters, Artificial Neural Networks, Recursive Neural Networks, Long-Short Term Memory, and Simple Recurrent Neural Network models. We find that the monthly freshwater demand of Istanbul is best predicted by Multi-Layer Perceptron and Seasonal ARIMA. From the predictive modeling perspective, this result is another indication of the combined usage of conventional forecasting models and novel machine learning techniques to achieve the highest forecasting accuracy.
COVID-19 disease is often transmitted through the respiratory tract, causing pneumonia and respiratory failure. As the severity of the disease increases, respiratory failure, shortness of breath, and tachypnea are observed, and approximately 3.2% of patients infected with COVID-19 need intensive care support. In this pandemic, where the intensive care capacities are not sufficient, the most appropriate option to provide mechanical ventilation support to the patients is to try to meet the need by transforming the anesthesia machines into mechanical ventilators and the operating room into an intensive care room. The purpose of this section is to explain the requirements for converting operating rooms to intensive care units and preparing anesthesia machines for mechanical ventilation use in extraordinary situations such as pandemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.