SUMMARY
Cellular heterogeneity within the mammalian brain poses a challenge
toward understanding its complex functions. Within the olfactory bulb, odor
information is processed by subtypes of inhibitory interneurons whose
heterogeneity and functionality are influenced by ongoing adult neurogenesis. To
investigate this cellular heterogeneity and better understand adult-born neuron
development, we utilized single-cell RNA sequencing and computational modeling
to reveal diverse and transcriptionally distinct neuronal and nonneuronal cell
types. We also analyzed molecular changes during adult-born interneuron
maturation and uncovered developmental programs within their gene expression
profiles. Finally, we identified that distinct neuronal subtypes are
differentially affected by sensory experience. Together, these data provide a
transcriptome-based foundation for investigating subtype-specific neuronal
function in the olfactory bulb (OB), charting the molecular profiles that arise
during the maturation and integration of adult-born neurons and how they
dynamically change in an activity-dependent manner.
Atypical food intake is a primary cause of obesity and other eating and metabolic disorders. Insight into the neural control of feeding has previously focused mainly on signalling mechanisms associated with the hypothalamus1-5, the major centre in the brain that regulates body weight homeostasis6,7. However, roles of non-canonical central nervous system signalling mechanisms in regulating feeding behaviour have been largely uncharacterized. Acetylcholine has long been proposed to influence feeding8-10 owing in part to the functional similarity between acetylcholine and nicotine, a known appetite suppressant. Nicotine is an exogenous agonist for acetylcholine receptors, suggesting that endogenous cholinergic signalling may play a part in normal physiological regulation of feeding. However, it remains unclear how cholinergic neurons in the brain regulate food intake. Here we report that cholinergic neurons of the mouse basal forebrain potently influence food intake and body weight. Impairment of cholinergic signalling increases food intake and results in severe obesity, whereas enhanced cholinergic signalling decreases food consumption. We found that cholinergic circuits modulate appetite suppression on downstream targets in the hypothalamus. Together our data reveal the cholinergic basal forebrain as a major modulatory centre underlying feeding behaviour.
In multipolar vertebrate neurons, action potentials (APs) initiate close to the soma, at the axonal initial segment. Invertebrate neurons are typically unipolar with dendrites integrating directly into the axon. Where APs are initiated in the axons of invertebrate neurons is unclear. Voltage-gated sodium (Na V ) channels are a functional hallmark of the axonal initial segment in vertebrates. We used an intronic Minos-Mediated Integration Cassette to determine the endogenous gene expression and subcellular localization of the sole Na V channel in both male and female Drosophila, para. Despite being the only Na V channel in the fly, we show that only 23 6 1% of neurons in the embryonic and larval CNS express para, while in the adult CNS para is broadly expressed. We generated a single-cell transcriptomic atlas of the whole third instar larval brain to identify para expressing neurons and show that it positively correlates with markers of differentiated, actively firing neurons. Therefore, only 23 6 1% of larval neurons may be capable of firing Na V -dependent APs. We then show that Para is enriched in an axonal segment, distal to the site of dendritic integration into the axon, which we named the distal axonal segment (DAS). The DAS is present in multiple neuron classes in both the third instar larval and adult CNS. Whole cell patch clamp electrophysiological recordings of adult CNS fly neurons are consistent with the interpretation that Na v -dependent APs originate in the DAS. Identification of the distal Na V localization in fly neurons will enable more accurate interpretation of electrophysiological recordings in invertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.