In this study, the problem of backward heating in microwave ablation technique is examined and an electromagnetic solution based on the use of high impedance graphene material is presented for its mitigation. In this context, a one-atom-thick graphene layer is added on the coaxial double slot antenna. In addition to the electromagnetic behavior, thermal effects caused by the graphene-covered antenna are emphasized. The graphene's conductivity being highly dependent on its chemical potential and the relaxation time, a parametric study is performed to determine a range of tolerances within which the graphene-coated antenna outperform a typical graphene-free antenna. The range of values is found to be 0 < μ c < 0.5 eV and τ < 0.4 ps, for the chemical potential and the relaxation time, respectively. The backward heating problem being prevented, the ablation region is ensured to be spherical around the tip of the antenna. Effects of the graphene layer to the heat dissipation in the tissue, the necrotic tissue ratio (damage to the cancerous tissue of the caused by electromagnetic energy), and the treatment time using the coaxial double slot antenna were examined. The results show that the heat dissipation is concentrated around the slots (region of cancerous tissue) and a higher necrotic tissue ratio can be achieved with a graphene-covered double slot antenna in a shorter time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.