We consider a continuous optical discharge (COD), which is also known as 'laser-supported combustion wave') [1], sustained by a weakly focused CO 2 laser beam. We also introduce a cold gas flow incident in the direction of laser radiation propagation in order to stabilize the COD (Figure 1). Furthermore, the gas flow is assumed to be subsonic and laminar at atmospheric pressure. We have developed a twodimensional radiative gas-dynamic model for COD, which uses realistic quasi optics and takes into account all of important factors that are of influence, including the effect of the laser radiation refraction in the plasma, which is essentially capable of changing the light channel geometry and space distribution of the beam intensity. We determine the thermal and gasdynamic structure of COD by solving the set of equations, which includes
Propagation of short and intense laser beams in the atmosphere is considered for the purpose of identifying the temporal compression. The conditions and validity of linear and nonlinear compression theories are discussed. The effects of chirping and pulse power in the preionization regime are deliberated. The fact that the linear theory cannot explain the pulse compression in the atmosphere is presented.
Self-focusing of high power, short laser pulses is considered for the purpose of identifying physical parameters that allow a remotely controllable ionization in the atmosphere. The propagation equation including diffraction, group velocity dispersion, Kerr nonlinearity and bound electrons effects is derived. A Lagrange density describing the propagation equation depending on a general pulse amplitude is presented for a propagation regime in the absence of ionization and plasma defocusing. Lagrange equations for beam parameters are determined and solved for a particular ansatz describing a chirped Gaussian beam with a curvature function. It is demonstrated that nonlinear effects not only cause transverse focusing but also temporally enhance the group velocity dispersion. A mutual interrelation between the pulse power, curvature, and chirp parameters is derived explicitly. Moreover, the location where the pulse self-focuses is addressed within the limits on the propagation distance along which the beam shape and the initial symmetry are preserved. Thus, a complete analytical structure of remote ionization is underlined.
The longitudinal and radial wakefields produced by a single laser pulse in a plasma are calculated. The limits on the laser wakefield acceleration because of diffraction, optical guiding, and energy loss due to radiation are examined. In particular for a bi-Gaussian laser beam, the energy gain about 4.6 GeV/cm s is estimated. A general constraint on the plasma density is presented. All the limits are compared and a localized density channel of width 4.6×10−5 cm is proposed.
The pre-filamentation regime of propagation of a short and intense laser pulse in the atmosphere is considered. Spatiotemporal self-focusing dynamics of the laser beam are investigated by calculating the coupled differential equations for spot size, pulse length, phase, curvature, and chirp functions of a Gaussian laser pulse via a variational technique. The effect of initial curvature parameter on the propagation of the laser pulse is taken into consideration. A method relying on the adjustment of the initial curvature parameter can expand the filamentation distance of a laser beam of given power and chirp is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.