This paper examines the potential use of fire extinguishing balls as part of a proposed system, where drone and remote-sensing technologies are utilized cooperatively as a supplement to traditional firefighting methods. The proposed system consists of (1) scouting unmanned aircraft system (UAS) to detect spot fires and monitor the risk of wildfire approaching a building, fence, and/or firefighting crew via remote sensing, (2) communication UAS to establish and extend the communication channel between scouting UAS and fire-fighting UAS, and (3) a fire-fighting UAS autonomously traveling to the waypoints to drop fire extinguishing balls (environmental friendly, heat activated suppressants). This concept is under development through a transdisciplinary multi-institutional project. The scope of this paper encloses general illustration of this design, and the experiments conducted so far to evaluate fire extinguishing balls. The results of the experiments show that smaller size fire extinguishing balls available in the global marketplace attached to drones might not be effective in aiding in building fires (unless there are open windows in the buildings already). On the contrary, results show that even the smaller size fire extinguishing balls might be effective in extinguishing short grass fires (around 0.5 kg size ball extinguished a circle of 1-meter of short grass). This finding guided the authors towards wildfire fighting rather than building fires. The paper also demonstrates building of heavy payload drones (around 15 kg payload), and the progress of development of an apparatus carrying fire-extinguishing balls attachable to drones.
Drones are increasing in popularity and are reaching the public faster than ever before. Consequently, the chances of a drone being misused are multiplying. Automated drone detection is necessary to prevent unauthorized and unwanted drone interventions. In this research, we designed an automated drone detection system using YOLOv4. The model was trained using drone and bird datasets. We then evaluated the trained YOLOv4 model on the testing dataset, using mean average precision (mAP), frames per second (FPS), precision, recall, and F1-score as evaluation parameters. We next collected our own two types of drone videos, performed drone detections, and calculated the FPS to identify the speed of detection at three altitudes. Our methodology showed better performance than what has been found in previous similar studies, achieving a mAP of 74.36%, precision of 0.95, recall of 0.68, and F1-score of 0.79. For video detection, we achieved an FPS of 20.5 on the DJI Phantom III and an FPS of 19.0 on the DJI Mavic Pro.
The rapidly increasing number of drones in the national airspace, including those for recreational and commercial applications, has raised concerns regarding misuse. Autonomous drone detection systems offer a probable solution to overcoming the issue of potential drone misuse, such as drug smuggling, violating people’s privacy, etc. Detecting drones can be difficult, due to similar objects in the sky, such as airplanes and birds. In addition, automated drone detection systems need to be trained with ample amounts of data to provide high accuracy. Real-time detection is also necessary, but this requires highly configured devices such as a graphical processing unit (GPU). The present study sought to overcome these challenges by proposing a one-shot detector called You Only Look Once version 5 (YOLOv5), which can train the proposed model using pre-trained weights and data augmentation. The trained model was evaluated using mean average precision (mAP) and recall measures. The model achieved a 90.40% mAP, a 21.57% improvement over our previous model that used You Only Look Once version 4 (YOLOv4) and was tested on the same dataset.
This study aims at introducing a modeling and simulation approach for a green roof system which can reduce energy cost of a building exposed to high temperatures throughout the summer season. First, to understand thermal impact of a green roof system on a building surface, a field-based study has been conducted in Commerce, Texas, U.S., where the average maximum temperature in summer is 104 °F (40 °C). Two types of analyses were conducted: (1) comparison of temperature between different plant type via Analysis of variance (ANOVA) and (2) polynomial regression analysis to develop thermal impact estimation model based on air temperature and presence of a green roof. In addition, an agent-based simulation (ABS) model was developed via AnyLogic® University 8.6.0 simulation software, Chicago, IL, U.S., in order to accurately estimate energy cost and benefits of a building with a photovoltaic-green roof system. The proposed approach was applied to estimate energy reduction cost of the Keith D. McFarland Science Building at Texas A&M University, Commerce, Texas (33.2410° N, 95.9104° W). As a result, the proposed approach was able to save $740,325.44 in energy cost of a heating, ventilation, and air conditioning (HAVC) system in the subject building. The proposed approach will contribute to the implementation of a sustainable building and urban agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.