The Rat Genome Database (RGD, http://rgd.mcw.edu) was developed to provide a core resource for rat researchers combining genetic, genomic, pathway, phenotype and strain information with a focus on disease. RGD users are provided with access to structured and curated data from the molecular level through to the level of the whole organism, including the variations associated with disease phenotypes. To fully support use of the rat as a translational model for biological systems and human disease, RGD continues to curate these datasets while enhancing and developing tools to allow efficient and effective access to the data in a variety of formats including linear genome viewers, pathway diagrams and biological ontologies. To support pathophysiological analysis of data, RGD Disease Portals provide an entryway to integrated gene, QTL and strain data specific to a particular disease. In addition to tool and content development and maintenance, RGD promotes rat research and provides user education by creating and disseminating tutorials on the curated datasets, submission processes, and tools available at RGD. By curating, storing, integrating, visualizing and promoting rat data, RGD ensures that the investment made into rat genomics and genetics can be leveraged by all interested investigators.
Genome-wide association studies (GWAS) with hundreds of żthousands of single nucleotide polymorphisms (SNPs) are popular strategies to reveal the genetic basis of human complex diseases. Despite many successes of GWAS, it is well recognized that new analytical approaches have to be integrated to achieve their full potential. Starting with a list of SNPs, found to be associated with disease in GWAS, here we propose a novel methodology to devise functionally important KEGG pathways through the identification of genes within these pathways, where these genes are obtained from SNP analysis. Our methodology is based on functionalization of important SNPs to identify effected genes and disease related pathways. We have tested our methodology on WTCCC Rheumatoid Arthritis (RA) dataset and identified: i) previously known RA related KEGG pathways (e.g., Toll-like receptor signaling, Jak-STAT signaling, Antigen processing, Leukocyte transendothelial migration and MAPK signaling pathways); ii) additional KEGG pathways (e.g., Pathways in cancer, Neurotrophin signaling, Chemokine signaling pathways) as associated with RA. Furthermore, these newly found pathways included genes which are targets of RA-specific drugs. Even though GWAS analysis identifies 14 out of 83 of those drug target genes; newly found functionally important KEGG pathways led to the discovery of 25 out of 83 genes, known to be used as drug targets for the treatment of RA. Among the previously known pathways, we identified additional genes associated with RA (e.g. Antigen processing and presentation, Tight junction). Importantly, within these pathways, the associations between some of these additionally found genes, such as HLA-C, HLA-G, PRKCQ, PRKCZ, TAP1, TAP2 and RA were verified by either OMIM database or by literature retrieved from the NCBI PubMed module. With the whole-genome sequencing on the horizon, we show that the full potential of GWAS can be achieved by integrating pathway and network-oriented analysis and prior knowledge from functional properties of a SNP.
Genome-wide association studies (GWAS) have revolutionized the search for the variants underlying human complex diseases. However, in a typical GWAS, only a minority of the single-nucleotide polymorphisms (SNPs) with the strongest evidence of association is explained. One possible reason of complex diseases is the alterations in the activity of several biological pathways. Here we present a web server called Pathway and Network-Oriented GWAS Analysis to devise functionally important pathways through the identification of SNP-targeted genes within these pathways. The strength of our methodology stems from its multidimensional perspective, where we combine evidence from the following five resources: (i) genetic association information obtained through GWAS, (ii) SNP functional information, (iii) protein-protein interaction network, (iv) linkage disequilibrium and (v) biochemical pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.