Artificial nanoparticles accumulate a protein corona layer in biological fluids, which significantly influences their bioactivity. As nanosized obligate intracellular parasites, viruses share many biophysical properties with artificial nanoparticles in extracellular environments and here we show that respiratory syncytial virus (RSV) and herpes simplex virus type 1 (HSV-1) accumulate a rich and distinctive protein corona in different biological fluids. Moreover, we show that corona pre-coating differentially affects viral infectivity and immune cell activation. In addition, we demonstrate that viruses bind amyloidogenic peptides in their corona and catalyze amyloid formation via surface-assisted heterogeneous nucleation. Importantly, we show that HSV-1 catalyzes the aggregation of the amyloid β-peptide (Aβ 42 ), a major constituent of amyloid plaques in Alzheimer’s disease, in vitro and in animal models. Our results highlight the viral protein corona as an acquired structural layer that is critical for viral–host interactions and illustrate a mechanistic convergence between viral and amyloid pathologies.
Nanoparticles accumulate a plethora of host factors on their surface (protein corona) in biological fluids, which influence the nanoparticle activity. Here we provide evidence for the existence of a rich viral protein corona and show its implications for viral infectivity, immune cell activation and catalysis of amyloid aggregation. We demonstrate that respiratory syncytial virus (RSV), a major cause of respiratory tract infections, accumulates a distinctive protein corona in different biofluids including: human plasma, human bronchoalveolar lavage fluid, non-human primate plasma and fetal bovine serum. Additionally, corona pre-coating differentially affects viral infectivity and its ability to activate human monocyte-derived dendritic cells (moDCs) depending on the biofluid.Furthermore, we demonstrate that cell-free RSV can bind and catalyze the amyloid aggregation of an amyloidogenic peptide derived from the islet amyloid polypeptide (IAPP) via surface-assisted nucleation.Similarly, we show that herpes simplex virus 1 (HSV-1) catalyzes the amyloid aggregation of the amyloid-beta (Aβ 42 ) peptide which is the major constituent of amyloid plaques in Alzheimer's disease. Our results provide a proof-of-concept for the presence of a viral protein corona layer that is dependent on the microenvironment and influences viral-host interactions. Additionally, the demonstration of viral nanosurface driven amyloid catalysis in an extracellular environment illustrates convergence between viral and amyloid pathologies suggesting a novel mechanistic link that warrants further investigation.
In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON—bisLNA—with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson–Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.