Polymer scaffolds have many various applications in the field of tissue engineering, drug delivery, and implantation. They are applied as dispensing devices for bioactive molecules and as three-dimensional (3D) structures that provide stimulants that organize cells and direct desired original tissue formation. Hydrogels are preferred scaffolding material because they are structurally similar to the extracellular matrix of many tissues, often processed under mild conditions, and can be delivered in a minimally invasive manner. Hydrogel materials formed a group of polymeric materials. The hydrophilic structure allows them to hold large amounts of water in their three-dimensional backbone. As a result, hydrogels are used as scaffolding material for drug and growth factor transmission, tissue engineering modifications, and many other applications. In this chapter, we describe the physical and chemical structure of hydrogels, side groups, cross-linkings, swelling properties, types of polymers and fabrication methods, and application fields.
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.