Warburg-Micro syndrome (WARBM) is a rare autosomal recessively inherited neuro-ophthalmologic syndrome. Although WARBM shows genetic heterogeneity, the pathogenic variants in RAB3GAP1 were the most common cause of WARBM. In this study, we aimed to evaluate the detailed clinical and dysmorphic features of seven WARBM1 patients and overview the variant spectrum of RAB3GAP1 in comparison with the literature who were referred due to congenital cataracts. A previously reported homozygous variant (c.2187_2188delGAinsCT) was identified in three of these patients, while the other four had three novel variants (c.251_258delAGAA, c.2606+1G>A, and c.2861_2862dupGC). Congenital cataract and corpus callosum hypo/agenesia are pathognomonic for WARBM, which could be distinguished from other similar syndromes with additional typical dysmorphic facial features. Although there is no known phenotype and genotype correlation in any type of WARBM, RAB3GAP1 gene analysis should be previously requested as the first step of genetic diagnosis in clinically suspicious patients when it is not possible to request a multi-gene panel.
Odontochondrodysplasia (ODCD, OMIM #184260) is a rare, non-lethal skeletal dysplasia characterized by involvement of the spine and metaphyseal regions of the long bones, pulmonary hypoplasia, short stature, joint hypermobility, and dentinogenesis imperfecta. ODCD is inherited in an autosomal recessive fashion with an unknown frequency caused by mutations of the thyroid hormone receptor interactor 11 gene (
TRIP11
; OMIM *604505). The
TRIP11
gene encodes the Golgi microtubule-associated protein 210 (GMAP-210), which is an indispensable protein for the function of the Golgi apparatus. Mutations in
TRIP11
also cause achondrogenesis type 1A (ACG1A). Null mutations of
TRIP11
lead to ACG1A, also known as a lethal skeletal dysplasia, while hypomorphic mutations cause ODCD. Here we report a male child diagnosed as ODCD with a novel compound heterozygous mutation who presented with skeletal changes, short stature, dentinogenesis imperfecta, and facial dysmorphism resembling achondroplasia and hypochondroplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.