[1] Bubbles play an important role in the exchange of gases between the atmosphere and ocean, altering both the rate of exchange and the equilibrium gas saturation state. We develop a parameterization of bubble-mediated gas fluxes for use in Earth system models. The parameterization is derived from a mechanistic model of the oceanic boundary layer that simulates turbulent flows and the size spectrum of bubbles across a range of wind speeds and is compared against other published formulations. Bubble-induced surface supersaturation increases rapidly with wind speed and is inversely related to temperature at a given wind speed, making the effect of bubbles greatest in regions that ventilate the deep ocean. The bubble-induced supersaturation in high-latitude surface waters compensates a substantial fraction of the undersaturation caused by surface cooling. Using a global ocean transport model, we show that this parameterization reproduces observed saturation rate profiles of the noble gas Argon in the deep Atlantic and Pacific Oceans. The abyssal argon supersaturation caused by bubbles varies according to gas solubility, ranging from 0.7% for soluble gases like CO 2 to 1.7% for less soluble gases such as N 2 . Bubble-induced supersaturation may be significant for biologically active gases such as oxygen.Citation: Liang, J.-H., C. Deutsch, J. C. McWilliams, B. Baschek, P. P. Sullivan, and D. Chiba (2013), Parameterizing bubble-mediated air-sea gas exchange and its effect on ocean ventilation, Global Biogeochem. Cycles, 27,[894][895][896][897][898][899][900][901][902][903][904][905]
Fronts and eddies identified with aerial guidance are seeded with drifters to quantify submesoscale flow kinematics. The Lagrangian observations show mean divergence and vorticity values that can exceed 5 times the Coriolis frequency. Values are the largest observed in the field to date and represent an extreme departure from geostrophic dynamics. The study also quantifies errors and biases associated with Lagrangian observations of the underlying velocity strain tensor. The greatest error results from undersampling, even with a large number of drifters. A significant bias comes from inhomogeneous sampling of convergent regions that accumulate drifters within a few hours of deployment. The study demonstrates a Lagrangian sampling paradigm for targeted submesoscale structures over a broad range of scales and presents flow kinematic values associated with vertical velocities O(10) m h−1 that can have profound implications on ocean biogeochemistry.
Mesoscale eddies can be strengthened by the absorption of submesoscale eddies resulting from mixed-layer baroclinic instabilities. This is shown for mesoscale eddies in the Agulhas Current system by investigating the kinetic energy cascade with a spectral and a coarse-graining approach in two model simulations of the Agulhas region. One simulation resolves mixed-layer baroclinic instabilities and one does not. When mixed-layer baroclinic instabilities are included, the largest submesoscale near-surface fluxes occur in winter-time in regions of strong mesoscale activity for upscale as well as downscale directions. The forward cascade at the smallest resolved scales occurs mainly in frontogenetic regions in the upper 30 m of the water column. In the Agulhas ring path, the forward cascade changes to an inverse cascade at a typical scale of mixed-layer eddies (15 km). At the same scale, the largest sources of the upscale flux occur. After the winter, the maximum of the upscale flux shifts to larger scales. Depending on the region, the kinetic energy reaches the mesoscales in spring or early summer aligned with the maximum of mesoscale kinetic energy. This indicates the importance of submesoscale flows for the mesoscale seasonal cycle. A case study shows that the underlying process is the mesoscale absorption of mixed-layer eddies. When mixed-layer baroclinic instabilities are not included in the simulation, the open-ocean upscale cascade in the Agulhas ring path is almost absent. This contributes to a 20 %-reduction of surface kinetic energy at mesoscales larger than 100 km when submesoscale dynamics are not resolved by the model.
[1] We report on the development of a bubble concentration model and a dissolved gas concentration model for the oceanic boundary layer. The bubble model solves a set of concentration equations for multiple gases in bubbles of different sizes, and the dissolved gas concentration model simulates the evolution of dissolved gases and dissolved inorganic carbon. The models include the effects of advection, diffusion, bubble buoyant rising, bubble size changes, gas exchange between bubbles and ambient water, and chemical reactions associated with the dissolution of CO 2 . The formulation consistency and the numerical accuracy are shown by the good agreement with a model describing individual bubble behavior in a test simulating the evolution of a bubble cloud released in the water. To study the bubble and dissolved gas evolution after a single wave-breaking event, the models are coupled with a fluid dynamical Direct Numerical Simulation model with spatially and temporally distributed momentum and bubble injection for a typical breaking wave. The modeled bubble size spectrum compares well with laboratory measurements. The breaker-induced vortex not only advects the bubble-induced dissolved gas anomalies downstream but also entrains the surface diffusion layer to greater depth. Due to the hydrostatic pressure and surface tension exerted on bubbles, gases inside bubbles are able to dissolve in slightly supersaturated water. When the water is highly supersaturated, bubbles add to the venting of dissolved gases.
Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions—both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.