Differential display screening was used to reveal differential gene expression between the tumorigenic breast cancer cell line CAL51 and nontumorigenic microcell hybrids obtained after transfer of human chromosome 17 into CAL51. The human profilin 1 (PFN1) gene was found overexpressed in the microcell hybrid clones compared with the parental line, which displayed a low profilin 1 level. A comparison between several different tumorigenic breast cancer cell lines with nontumorigenic lines showed consistently lower profilin 1 levels in the tumor cells. Transfection of PFN1 cDNA into CAL51 cells raised the profilin 1 level, had a prominent effect on cell growth, cytoskeletal organization and spreading, and suppressed tumorigenicity of the stable, PFN1-overexpressing cell clones in nude mice. Immunohistochemical analysis revealed intermediate and low levels of profilin 1 in different human breast cancers. These results suggest profilin 1 as a suppressor of the tumorigenic phenotype of breast cancer cells.
Loss of heterozygosity (LOH) and in silico expression analysis were applied to identify genes significantly downregulated in breast cancer within the genomic interval 6q23-25. Systematic comparison of candidate EST sequences with genomic sequences from this interval revealed the genomic structure of a potential target gene on 6q24.3, which we called SAM and SH3 domain containing 1 (SASH1). Loss of the gene-internal marker D6S311, found in 30% of primary breast cancer, was significantly correlated with poor survival and increase in tumor size. Two SASH1 transcripts of approximately 4.4 and 7.5 kb exist and are predominantly transcribed in the human breast, lung, thyroid, spleen, placenta and thymus. In breast cancer cell lines, SASH1 is only expressed at low levels. SASH1 is downregulated in the majority (74%) of breast tumors in comparison with corresponding normal breast epithelial tissues. In addition, SASH1 is also downregulated in tumors of the lung and thyroid. Analysis of the protein domain structure revealed that SASH1 is a member of a recently described family of SH3/SAM adapter molecules and thus suggests a role in signaling pathways. We assume that SASH1 is a new tumor suppressor gene possibly involved in tumorigenesis of breast and other solid cancers. We were unable to find mutations in the coding region of the gene in primary breast cancers showing LOH within the critical region. We therefore hypothesize that other mechanisms as for instance methylation of the promoter region of SASH1 are responsible for the loss of expression of SASH1 in primary and metastatic breast cancer.
Profilin 1 (PFN1) is a regulator of the microfilament system and is involved in various signaling pathways. It interacts with many cytoplasmic and nuclear ligands. The importance of PFN1 for human tissue differentiation has been demonstrated by the findings that human cancer cells, expressing conspicuously low PFN1 levels, adopt a nontumorigenic phenotype upon raising their PFN1 level. In the present study, we characterize the ligand binding site crucial for profilin's tumor suppressor activity. Starting with CAL51, a human breast cancer cell line highly tumorigenic in nude mice, we established stable clones that express PFN1 mutants differentially defective in ligand binding. Clones expressing PFN1 mutants with reduced binding to either poly-proline-stretch ligands or phosphatidyl-inositol-4,5-bisphosphate, but with a functional actin binding site, were normal in growth, adhesion, and anchorage dependence, with only a weak tendency to elicit tumors in nude mice, similar to controls expressing wild-type PFN1. In contrast, clones expressing a mutant with severely reduced capacity to bind actin still behaved like the parental CAL51 and were highly tumorigenic. We conclude that the actin binding site on profilin is instrumental for normal differentiation of human epithelia and the tumor suppressor function of PFN1.
We have identified a gene, ST18 (suppression of tumorigenicity 18, breast carcinoma, zinc-finger protein), within a frequent imbalanced region of chromosome 8q11 as a breast cancer tumor suppressor gene. The ST18 gene encodes a zinc-finger DNA-binding protein with six fingers of the C2HC type (configuration Cys-X 5 -Cys-X 12 -His-X 4 -Cys) and an SMC domain. ST18 has the potential to act as transcriptional regulator. ST18 is expressed in a number of normal tissues including mammary epithelial cells although the level of expression is quite low. In breast cancer cell lines and the majority of primary breast tumors, ST18 mRNA is significantly downregulated. A 160 bp region within the promoter of the ST18 gene is hypermethylated in about 80% of the breast cancer samples and in the majority of breast cancer cell lines. The strong correlation between ST18 promoter hypermethylation and loss of ST18 expression in tumor cells suggests that this epigenetic mechanism is responsible for tumor-specific downregulation. We further show that ectopic ST18 expression in MCF-7 breast cancer cells strongly inhibits colony formation in soft agar and the formation of tumors in a xenograft mouse model.
Polyomavirus-derived virus-like particles (VLPs) have been described as potential carriers for encapsidation of nucleic acids in gene therapy. Although VLPs can be generated in E. coli or insect cells, the yeast expression system should be advantageous as it is well established for the biotechnological generation of products for human use, especially because they are free of toxins hazardous for humans. We selected the yeast Saccharomyces cerevisiae for expression of the major capsid protein VP1 of a non-human polyomavirus, the hamster polyomavirus (HaPV). Two entire HaPV VP1-coding sequences, starting with the authentic and a second upstream ATG, respectively, were subcloned and expressed to high levels in Saccharomyces cerevisiae. The expressed VP1 assembled spontaneously into VLPs with a structure resembling that of the native HaPV capsid. Determination of the subcellular localization revealed a nuclear localization of some particles formed by the N-terminally extended VP1, whereas particles formed by the authentic VP1 were found mainly in the cytoplasmic compartment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.