Background-Matrix metalloproteinases (MMPs) are enzymes involved in the proteolytic degradation of extracellular matrix. They play an important role in several disease processes, such as inflammation, cancer, and atherosclerosis. Methods and Results-In this study, we have used the broad-spectrum MMP inhibitor CGS 27023A to develop the radioligand [ 123 I]I-HO-CGS 27023A for in vivo imaging of MMP activity. Using this radioligand, we were able to specifically image MMP activity by scintigraphy in vivo in the MMP-rich vascular lesions that develop after carotid artery ligation and cholesterol-rich diet in apolipoprotein E-deficient mice. These results were confirmed by gamma counting of lesional tissue (counts per minute per milligram). Conclusions-Imaging of MMP activity in vivo is feasible using radiolabeled MMP inhibitors. Additional studies are needed to test the potential of this approach as a novel noninvasive clinical diagnostic tool for the management of human MMP-related diseases.
Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endopeptidases. Representing a subfamily of the metzincin superfamily, MMPs are involved in the proteolytic degradation of components of the extracellular matrix. Unregulated MMP expression, MMP dysregulation and locally increased MMP activity are common features of various diseases, such as cancer, atherosclerosis, stroke, arthritis, and others. Therefore, activated MMPs are suitable biological targets for the specific visualization of such pathologies, in particular by using radiolabeled MMP inhibitors (MMPIs). The aim of this work was to develop a radiofluorinated molecular probe for noninvasive in vivo imaging for the detection of up-regulated levels of activated MMPs in the living organism. Fluorinated MMPIs (26, 31 and 38) based on the pyrimidine-2,4,6-trione lead structure RO 28-2653 (1) were synthesized, and their MMP inhibition potency was evaluated in vitro. The radiosynthesis and the in vivo biodistribution of the first (18)F-labeled prototype, MMP-targeted tracer [(18)F]26, suitable for molecular imaging by means of positron emission tomography (PET) were realized.
AimsClinical observations in patients with long QT syndrome carrying sodium channel mutations (LQT3) suggest that bradycardia caused by parasympathetic stimulation may provoke torsades de pointes (TdP). β-Adrenoceptor blockers appear less effective in LQT3 than in other forms of the disease.Methods and resultsWe studied effects of autonomic modulation on arrhythmias in vivo and in vitro and quantified sympathetic innervation by autoradiography in heterozygous mice with a knock-in deletion (ΔKPQ) in the Scn5a gene coding for the cardiac sodium channel and increased late sodium current (LQT3 mice). Cholinergic stimulation by carbachol provoked bigemini and TdP in freely roaming LQT3 mice. No arrhythmias were provoked by physical stress, mental stress, isoproterenol, or atropine. In isolated, beating hearts, carbachol did not prolong action potentials per se, but caused bradycardia and rate-dependent action potential prolongation. The muscarinic inhibitor AFDX116 prevented effects of carbachol on heart rate and arrhythmias. β-Adrenoceptor stimulation suppressed arrhythmias, shortened rate-corrected action potential duration, increased rate, and minimized difference in late sodium current between genotypes. β-Adrenoceptor density was reduced in LQT3 hearts. Acute β-adrenoceptor blockade by esmolol, propranolol or chronic propranolol in vivo did not suppress arrhythmias. Chronic flecainide pre-treatment prevented arrhythmias (all P < 0.05).ConclusionCholinergic stimulation provokes arrhythmias in this model of LQT3 by triggering bradycardia. β-Adrenoceptor density is reduced, and β-adrenoceptor blockade does not prevent arrhythmias. Sodium channel blockade and β-adrenoceptor stimulation suppress arrhythmias by shortening repolarization and minimizing difference in late sodium current.
The transcriptional activation mediated by cAMP-response element (CRE) and transcription factors of the CRE-binding protein (CREB)/CRE modulator (CREM) family represents an important mechanism of cAMP-dependent gene regulation possibly implicated in detrimental effects of chronic -adrenergic stimulation in end-stage heart failure. We studied the cardiac role of CREM in transgenic mice with heart-directed expression of CREM-Ib⌬C-X, a human cardiac CREM isoform. Transgenic mice displayed atrial enlargement with atrial and ventricular hypertrophy, developed atrial fibrillation, and died prematurely. In vivo hemodynamic assessment revealed increased contractility of transgenic left ventricles probably due to a selective up-regulation of SERCA2, the cardiac Ca 2؉ -ATPase of the sarcoplasmic reticulum. In transgenic ventricles, reduced phosphorylation of phospholamban and of the CREB was associated with increased activity of serine-threonine protein phosphatase 1. The density of  1 -adrenoreceptor was increased, and messenger RNAs encoding transcription factor dHAND and small G-protein RhoB were decreased in transgenic hearts as compared with wild-type controls. Our results indicate that heart-directed expression of CREM-Ib⌬C-X leads to complex cardiac alterations, suggesting CREM as a central regulator of cardiac morphology, function, and gene expression.The transcriptional activation mediated by the cAMP-response element (CRE) 1 and transcription factors of the CREbinding protein (CREB)/CRE modulator (CREM) family represents an important mechanism of cAMP-responsive gene control (1). CREB and CREM bind as homo-or heterodimers to the CRE, a palindromic consensus element in gene promoters of numerous target genes. One mechanism of CRE-mediated transcriptional activation is the cAMP-dependent protein kinase A (PKA)-dependent phosphorylation of a critical serine in activating isoforms of CREB or CREM, finally leading to activation of the transcriptional complex (2). Inhibitory CREM or CREB isoforms lack functional domains that mediate transcriptional activation or regulation by phosphorylation. Those repressors bind to the CRE as homodimers or as heterodimers in combination with other activating or inhibitory isoforms and suppress transcriptional activation by displacing functionally active dimers from the CRE.Several studies suggested that CRE-mediated transcriptional regulation plays an important role in cardiac gene regulation contributing to the pathophysiology of heart failure: (i) CREB and CREM are both expressed in human heart (3, 4); (ii) transgenic mice with heart-directed expression of a nonphosphorylatable, dominant-negative CREB isoform (dnCREB) (5) or of ATF3 (6), another repressor of CRE-mediated transcriptional activation, developed cardiac hypertrophy and signs of heart failure; and (iii) CREM-deficient mice (general knockout) displayed left ventricular dysfunction in the absence of hypertrophy and premature death (7,8).Here, we tested the role of CREM-Ib⌬C-X, a CREM isoform previously isolated from ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.